Schulinterner Lehrplan (Sekundarstufe II) zum Kernlehrplan für die gymnasiale Oberstufe

Physik

2.1.1 Übersichtsraster Unterrichtsvorhaben

Unterrichtsvorhaben der Einführungsphase			
Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte	
Physik und Sport	Mechanik	E7 Arbeits- und Denkweisen	
Wie lassen sich Bewegungen vermessen und	Kräfte und Bewegungen	K4 Argumentation	
analysieren?	Energie und Impuls	E5 Auswertung	
Zeitbedarf: 42 Ustd.		E6 Modelle	
		UF2 Auswahl	
Auf dem Weg in den Weltraum	Mechanik	UF4 Vernetzung	
Wie kommt man zu physikalischen Erkenntnis-	Gravitation	E3 Hypothesen	
sen über unser Sonnensystem?	Kräfte und Bewegungen	E6 Modelle	
Zeitbedarf: 28 Ustd.	Energie und Impuls	E7 Arbeits- und Denkweisen	
Schall	Mechanik	E2 Wahrnehmung und Messung	
Wie lässt sich Schall physikalisch untersuchen?	Schwingungen und Wellen	UF1 Wiedergabe	
Zeitbedarf: 10 Ustd.	Kräfte und Bewegungen	K1 Dokumentation	
	Energie und Impuls		
Summe Einführungsphase: 80 Stunden			

Unterrichtsvorhaben der Qualifikationsphase (Q1) – GRUNDKURS			
Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte	
Erforschung des Photons	Quantenobjekte	E2 Wahrnehmung und Messung	
Wie kann das Verhalten von Licht beschrieben	Photon (Wellenaspekt)	E5 Auswertung	
und erklärt werden?	, , ,	K3 Präsentation	
Zeitbedarf: 14 Ustd.			
Erforschung des Elektrons	Quantenobjekte	UF1 Wiedergabe	
Wie können physikalische Eigenschaften wie die	Elektron (Teilchenaspekt)	UF3 Systematisierung	
Ladung und die Masse eines Elektrons gemes-	, ,	E5 Auswertung	
sen werden?		E6 Modelle	
Zeitbedarf: 15 Ustd.			
Photonen und Elektronen als Quantenobjekte	Quantenobjekte	E6 Modelle	
Kann das Verhalten von Elektronen und Photo-	Elektron und Photon (Teilchenaspekt, Wellen-	E7 Arbeits- und Denkweisen	
nen durch ein gemeinsames Modell beschrieben	aspekt)	K4 Argumentation	
werden?	Quantenobjekte und ihre Eigenschaften	B4 Möglichkeiten und Grenzen	
Zeitbedarf: 5 Ustd.	,		
Energieversorgung und Transport mit Generato-	Elektrodynamik	UF2 Auswahl	
ren und Transformatoren	Spannung und elektrische Energie	UF4 Vernetzung	
Wie kann elektrische Energie gewonnen, verteilt	Induktion	E2 Wahrnehmung und Messung	
und bereitgestellt werden?	Spannungswandlung	E5 Auswertung	
Zeitbedarf: 18 Ustd.		E6 Modelle	
		K3 Präsentation	
		B1 Kriterien	
Wirbelströme im Alltag	Elektrodynamik	UF4 Vernetzung	
Wie kann man Wirbelströme technisch nutzen?	Induktion	E5 Auswertung	
Zeitbedarf: 4 Ustd.		B1 Kriterien	
Summe Qualifikationsphase (Q1) – GRUNDKURS: 56 Stunden			

Unterrichtsvorhaben der Qualifikationsphase (Q2) – GRUNDKURS				
Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte		
Erforschung des Mikro- und Makrokosmos	Strahlung und Materie	UF1 Wiedergabe		
Wie gewinnt man Informationen zum Aufbau der	Energiequantelung der Atomhülle	E5 Auswertung		
Materie?	Spektrum der elektromagnetischen Strahlung	E2 Wahrnehmung und Messung		
Zeitbedarf: 13 Ustd.				
Mensch und Strahlung	Strahlung und Materie	UF1 Wiedergabe		
Wie wirkt Strahlung auf den Menschen?	Kernumwandlungen	B3 Werte und Normen		
Zeitbedarf: 9 Ustd.	Ionisierende Strahlung	B4 Möglichkeiten und Grenzen		
	Spektrum der elektromagnetischen Strahlung			
Forschung am CERN und DESY	Strahlung und Materie	UF3 Systematisierung		
Was sind die kleinsten Bausteine der Materie?	Standardmodell der Elementarteilchen	E6 Modelle		
Zeitbedarf: 6 Ustd.				
Navigationssysteme	Relativität von Raum und Zeit	UF1 Wiedergabe		
Welchen Einfluss hat Bewegung auf den Ablauf	Konstanz der Lichtgeschwindigkeit	E6 Modelle		
der Zeit?	Zeitdilatation			
Zeitbedarf: 5 Ustd.				
Teilchenbeschleuniger	Relativität von Raum und Zeit	UF4 Vernetzung		
Ist die Masse bewegter Teilchen konstant?	Veränderlichkeit der Masse	B1 Kriterien		
Zeitbedarf: 6 Ustd.	Energie-Masse Äquivalenz			
Das heutige Weltbild	Relativität von Raum und Zeit	E7 Arbeits- und Denkweisen		
Welchen Beitrag liefert die Relativitätstheorie zur	Konstanz der Lichtgeschwindigkeit	K3 Präsentation		
Erklärung unserer Welt?	Zeitdilatation			
Zeitbedarf: 2 Ustd.	Veränderlichkeit der Masse			
	Energie-Masse Äquivalenz			
Summe Qualifikationsphase (Q2) – GRUNDKURS: 41 Stunden				

Unterrichtsvorhaben der Qualifikationsphase (Q1) – LEISTUNGSKURS			
Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte	
Satellitennavigation – Zeitmessung ist nicht ab-	Relativitätstheorie	UF2 Auswahl	
solut	Konstanz der Lichtgeschwindigkeit	E6 Modelle	
Welchen Einfluss hat Bewegung auf den Ablauf	Problem der Gleichzeitigkeit		
der Zeit?	-		
Zeitbedarf: 4 Ustd.			
Höhenstrahlung	Relativitätstheorie	E5 Auswertung	
Warum erreichen Myonen aus der oberen Atmosphäre die Erdoberfläche?	Zeitdilatation und Längenkontraktion	K3 Präsentation	
Zeitbedarf: 4 Ustd.			
Teilchenbeschleuniger - Warum Teilchen aus	Relativitätstheorie	UF4 Vernetzung	
dem Takt geraten	Relativistische Massenzunahme	B1 Kriterien	
Ist die Masse bewegter Teilchen konstant?	Energie-Masse-Beziehung		
Zeitbedarf: 8 Ustd.			
Satellitennavigation – Zeitmessung unter dem	Relativitätstheorie	K3 Präsentation	
Einfluss von Geschwindigkeit und Gravitation	Der Einfluss der Gravitation auf die Zeitmes-		
Beeinflusst Gravitation den Ablauf der Zeit?	sung		
Zeitbedarf: 4 Ustd.			
Das heutige Weltbild	Relativitätstheorie	B4 Möglichkeiten und Grenzen	
Welchen Beitrag liefert die Relativitätstheorie zur	Konstanz der Lichtgeschwindigkeit		
Erklärung unserer Welt?	Problem der Gleichzeitigkeit		
Zeitbedarf: 4 Ustd.	 Zeitdilatation und Längenkontraktion 		
	Relativistische Massenzunahme		
	Energie-Masse-Beziehung		
	Der Einfluss der Gravitation auf die Zeitmes-		
	sung		

Kontovt und Laitfraga	Inhaltofolder Inhaltlighe Cohwernunkto	Kompetenzschwerpunkte		
Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	i :		
Untersuchung von Elektronen	Elektrik	UF1 Wiedergabe		
Wie können physikalische Eigenschaften wie die	Eigenschaften elektrischer Ladungen und ihrer	UF2 Auswahl		
Ladung und die Masse eines Elektrons gemes-	Felder	E6 Modelle		
sen werden?	 Bewegung von Ladungsträgern in elektrischen 	K3 Präsentation		
Zeitbedarf: 24 Ustd.	und magnetischen Feldern	B1 Kriterien		
	-	B4 Möglichkeiten und Grenzen		
Aufbau und Funktionsweise wichtiger Versuchs-	Elektrik	UF2 Auswahl		
und Messapparaturen	Eigenschaften elektrischer Ladungen und ihrer	UF4 Vernetzung		
Wie und warum werden physikalische Größen	Felder	E1 Probleme und Fragestellungen		
meistens elektrisch erfasst und wie werden sie	Bewegung von Ladungsträgern in elektrischen	E5 Auswertung		
verarbeitet?	und magnetischen Feldern	E6 Modelle		
Zeitbedarf: 22 Ustd.	3	K3 Präsentation		
		B1 Kriterien		
		B4 Möglichkeiten und Grenzen		
Erzeugung, Verteilung und Bereitstellung elektri-	Elektrik	UF2 Auswahl		
scher Energie	Elektromagnetische Induktion	E6 Modelle		
Wie kann elektrische Energie gewonnen, verteilt		B4 Möglichkeiten und Grenzen		
und bereitgestellt werden?				
Zeitbedarf: 22 Ustd.				
Physikalische Grundlagen der drahtlosen Nach-	Elektrik	UF1 Wiedergabe		
richtenübermittlung	Elektromagnetische Schwingungen und Wellen	UF2 Auswahl		
Wie können Nachrichten ohne Materietransport	2.01.1.01.1.agriculosiio Schillingarigori aria 11011011	E4 Untersuchungen und Experimente		
übermittelt werden?		E5 Auswertung		
Zeitbedarf: 28 Ustd.		E6 Modelle		
Zonodan. Zo oda.		K3 Präsentation		
		B1 Kriterien		
		B4 Möglichkeiten und Grenzen		
Summe Qualifikationsphase (Q1) – LEISTUNGSKURS: 120 Stunden				
Suffille Qualificationspriase (QT) - LEISTONGSKOKS. 120 Stuffueri				

Unterrichtsvorhaben der Qualifikationsphase (Q2) – LEISTUNGSKURS			
Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte	
Erforschung des Photons	Quantenphysik	UF2 Auswahl	
Besteht Licht doch aus Teilchen?	Licht und Elektronen als Quantenobjekte	E6 Modelle	
Zeitbedarf: 10 Ustd.	Welle-Teilchen-Dualismus	E7 Arbeits- und Denkweisen	
	Quantenphysik und klassische Physik		
Röntgenstrahlung, Erforschung des Photons	Quantenphysik	UF1 Wiedergabe	
Was ist Röntgenstrahlung?	 Licht und Elektronen als Quantenobjekte 	E6 Modelle	
Zeitbedarf: 9 Ustd.			
Erforschung des Elektrons	Quantenphysik	UF1 Wiedergabe	
Kann das Verhalten von Elektronen und Photo-	Welle-Teilchen-Dualismus	K3 Präsentation	
nen durch ein gemeinsames Modell beschrieben			
werden?			
Zeitbedarf: 6 Ustd.			
Die Welt kleinster Dimensionen – Mikroobjekte	Quantenphysik	UF1 Wiedergabe	
und Quantentheorie	Welle-Teilchen-Dualismus und Wahrschein-	E7 Arbeits- und Denkweisen	
Was ist anders im Mikrokosmos?	lichkeitsinterpretation		
Zeitbedarf: 10 Ustd.	Quantenphysik und klassische Physik		

Kontext und Leitfrage	Inhaltsfelder, Inhaltliche Schwerpunkte	Kompetenzschwerpunkte		
Geschichte der Atommodelle, Lichtquellen und	Atom-, Kern- und Elementarteilchenphysik	UF1 Wiedergabe		
ihr Licht	Atomaufbau	E5 Auswertung		
Wie gewinnt man Informationen zum Aufbau der		E7 Arbeits- und Denkweisen		
Materie?				
Zeitbedarf: 10 Ustd.				
Physik in der Medizin (Bildgebende Verfahren,	Atom-, Kern- und Elementarteilchenphysik	UF3 Systematisierung		
Radiologie)	Ionisierende Strahlung	E6 Modelle		
Wie nutzt man Strahlung in der Medizin?	Radioaktiver Zerfall	UF4 Vernetzung		
Zeitbedarf: 14 Ustd.				
(Erdgeschichtliche) Altersbestimmungen	Atom-, Kern- und Elementarteilchenphysik	UF2 Auswahl		
Wie funktioniert die ¹⁴ C-Methode?	Radioaktiver Zerfall	E5 Auswertung		
Zeitbedarf: 10 Ustd.	A	DATE:		
Energiegewinnung durch nukleare Prozesse	Atom-, Kern- und Elementarteilchenphysik	B1 Kriterien		
Wie funktioniert ein Kernkraftwerk?	Kernspaltung und Kernfusion	UF4 Vernetzung		
Zeitbedarf: 9 Ustd.	Ionisierende Strahlung	LIFO Overtene dielemen		
Forschung am CERN und DESY – Elementarteil-	Atom-, Kern- und Elementarteilchenphysik	UF3 Systematisierung		
chen und ihre fundamentalen Wechselwirkungen Was sind die kleinsten Bausteine der Materie?	Elementarteilchen und ihre Wechselwirkungen	K2 Recherche		
Zeitbedarf: 11 Ustd.				
Summe Qualifikationsphase (Q2) – LEISTUNGSKURS: 89 Stunden				

2.1.2 Konkretisierte Unterrichtsvorhaben

2.1.2.1 Einführungsphase

Inhaltsfeld: Mechanik

Kontext: Physik und Sport

Leitfrage: Wie lassen sich Bewegungen vermessen, analysieren und optimieren?

Inhaltliche Schwerpunkte: Kräfte und Bewegungen, Energie und Impuls

Kompetenzschwerpunkte: Schülerinnen und Schüler können ...

- (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen
- (K4) physikalische Aussagen und Behauptungen mit sachlich fundierten und überzeugenden Argumenten begründen bzw. kritisieren.
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (UF2)zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Beschreibung von Bewegungen im Alltag und im Sport	stellen Änderungen in den Vorstellungen zu Bewegungen und zum Sonnensystem beim Übergang vom Mittelalter zur Neuzeit dar (UF3, E7), entnehmen Kernaussagen zu naturwissenschaftlichen Positionen zu Beginn der Neuzeit aus einfachen historischen Texten (K2, K4).	Textauszüge aus Galileis <i>Discor-si</i> zur Mechanik und zu den Fallgesetzen	Einstieg über faire Beurteilung sportlicher Leistungen (Weitsprung in West bzw. Ostrichtung, Speerwurf usw., Konsequenzen aus der Ansicht einer ruhenden oder einer bewegten Erde) Analyse alltäglicher Bewegungsabläufe, Analyse von Kraftwirkungen auf reibungsfreie Körper
Aristoteles vs. Galilei (2 Ustd.)		Handexperimente zur qualitativen Beobachtung von Fallbewegungen (z. B. Stahlkugel, glattes bzw. zur Kugel zusammengedrücktes Pa- pier, evakuiertes Fallrohr mit Feder und Metallstück)	Vorstellungen zur Trägheit und zur Fallbewegung, Diskussion von Alltagsvorstellungen und physikalischen Konzepten Vergleich der Vorstellungen von Aristoteles und Galilei zur Bewegung, Folgerungen für Vergleichbarkeit von sportlichen Leistungen.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Beschreibung und Analyse von linea- ren Bewegungen (16 Ustd.)	unterscheiden gleichförmige und gleichmäßig beschleunigte Bewegungen und erklären zugrundeliegende Ursachen (UF2), vereinfachen komplexe Bewegungs- und Gleichgewichtszustände durch Komponentenzerlegung bzw.	Digitale Videoanalyse (z.B. mit VIANA, Tracker) von Bewegungen im Sport (Fahrradfahrt o. anderes Fahrzeug, Sprint, Flug von Bällen)	Einführung in die Verwendung von digitaler Videoanalyse (Auswertung von Videosequenzen, Darstellung der Messdaten in Tabellen und Diagrammen mithilfe einer Software zur Tabellenkalkulation)
	Vektoraddition (E1), planen selbstständig Experimente zur quantitativen und qualitativen Untersuchung einfacher Zusammenhänge		Unterscheidung von gleichförmigen und (beliebig) beschleunigten Bewegungen (insb. auch die gleichmäßig beschleunigte Bewegung)
	(u.a. zur Analyse von Bewegungen), führen sie durch, werten sie aus und bewerten Ergebnisse und Arbeitsprozesse (E2, E5, B1),		Erarbeitung der Bewegungsgesetze der gleichförmigen Bewegung
	stellen Daten in Tabellen und sinnvoll skalierten Diagrammen (u. a. <i>t-s</i> - und <i>t-v</i> -Diagramme, Vektordia-	Luftkissenfahrbahn mit digitaler Messwerterfassung:	Untersuchung gleichmäßig beschleunigter Bewegungen im Labor
	gramme) von Hand und mit digitalen Werkzeugen angemessen präzise dar (K1, K3),	Messreihe zur gleichmäßig be- schleunigten Bewegung	Erarbeitung der Bewegungsgesetze der gleichmäßig beschleunigten Bewegung
	erschließen und überprüfen mit Messdaten und Diagrammen funktionale Beziehungen zwischen mechanischen Größen (E5), bestimmen mechanische Größen mit mathematischen Verfahren und mithilfe digitaler Werkzeuge (u.a. Tabellenkalkulation, GTR) (E6),		Erstellung von t-s- und t-v-Diagrammen (auch mithilfe digitaler Hilfsmittel), die Interpretation und Auswertung derartiger Diagramme sollte intensiv geübt werden.
		Freier Fall und Bewegung auf einer schiefen Ebene	Planung von Experimenten durch die Schüler (Auswertung mithilfe der Videoanalyse)
		Her Schicler Ebene	Schlussfolgerungen bezüglich des Einflusses der Körpermasse bei Fallvorgängen, auch die Argumentation von Galilei ist besonders gut geeignet, um Argumentationsmuster in Physik explizit zu besprechen
		Wurfbewegungen Basketball, Korbwurf, Abstoß beim Fußball, günstigster Winkel	Wesentlich: Erarbeitung des Superpositions- prinzips (Komponentenzerlegung und Addition vektorieller Größen)
		i dispail, guristigster vvirinel	Herleitung der Gleichung für die Bahnkurve nur optional

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Newton'sche Gesetze, Kräfte und Bewegung (12 Ustd.)	berechnen mithilfe des Newton'schen Kraftgesetzes Wirkungen einzelner oder mehrerer Kräfte auf Bewegungszustände und sagen sie unter dem Aspekt der Kausalität vorher (E6), entscheiden begründet, welche Größen bei der Analyse von Bewegungen zu berücksichtigen oder zu vernachlässigen sind (E1, E4), reflektieren Regeln des Experimentierens in der Planung und Auswertung von Versuchen (u. a. Zielorientierung, Sicherheit, Variablenkontrolle, Kontrolle von Störungen und Fehlerquellen) (E2, E4), geben Kriterien (u.a. Objektivität, Reproduzierbarkeit, Widerspruchsfreiheit, Überprüfbarkeit) an, um die Zuverlässigkeit von Messergebnissen und physikalischen Aussagen zu beurteilen, und nutzen diese bei der Bewertung von eigenen und fremden Untersuchungen (B1),	Luftkissenfahrbahn mit digitaler Messwerterfassung: Messung der Beschleunigung eines Körpers in Abhängigkeit von der beschleunigenden Kraft Protokolle: Funktionen und Anforderungen	Kennzeichen von Laborexperimenten im Vergleich zu natürlichen Vorgängen besprechen, Ausschalten bzw. Kontrolle bzw. Vernachlässigen von Störungen Erarbeitung des Newton'schen Bewegungsgesetzes Definition der Kraft als Erweiterung des Kraftbegriffs aus der Sekundarstufe I. Berechnung von Kräften und Beschleunigungen beim Kugelstoßen, bei Ballsportarten, Einfluss von Reibungskräften

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Energie und Leistung Impuls (12 Ustd.)	erläutern die Größen Position, Strecke, Geschwindigkeit, Beschleunigung, Masse, Kraft, Arbeit, Energie, Impuls und ihre Beziehungen zueinander an unterschiedlichen Beispielen (UF2, UF4), analysieren in verschiedenen Kontexten Bewegungen qualitativ und quantitativ sowohl aus einer Wechselwirkungsperspektive als auch aus einer energetischen Sicht (E1, UF1), verwenden Erhaltungssätze (Energie- und Impulsbilanzen), um Bewegungszustände zu erklären sowie Be-	Einsatz des GTR zur Bestimmung des Integrals Fadenpendel (Schaukel) Sportvideos	Begriffe der Arbeit und der Energie aus der SI aufgreifen und wiederholen Deduktive Herleitung der Formeln für die mechanischen Energiearten aus den Newton'schen Gesetzen und der Definition der Arbeit Energieerhaltung an Beispielen (Pendel, Achterbahn, Halfpipe) erarbeiten und für Berechnungen nutzen Energetische Analysen in verschiedenen Sportarten (Hochsprung, Turmspringen, Turnen,
	wegungsgrößen zu berechnen (E3, E6), beschreiben eindimensionale Stoßvorgänge mit Wech- selwirkungen und Impulsänderungen (UF1), begründen argumentativ Sachaussagen, Behauptungen und Vermutungen zu mechanischen Vorgängen und ziehen dabei erarbeitetes Wissen sowie Messergebnis- se oder andere objektive Daten heran (K4), bewerten begründet die Darstellung bekannter mecha- nischer und anderer physikalischer Phänomene in ver- schiedenen Medien (Printmedien, Filme, Internet) be- züglich ihrer Relevanz und Richtigkeit (K2, K4),	Luftkissenfahrbahn mit digitaler Messwerterfassung: Messreihen zu elastischen und unelastischen Stößen	Stabhochsprung, Bobfahren, Skisprung) Begriff des Impulses und Impuls als Erhaltungsgröße Elastischer und inelastischer Stoß auch an anschaulichen Beispielen aus dem Sport (z.B. Impulserhaltung bei Ballsportarten, Kopfball beim Fußball, Kampfsport) Hinweis: Erweiterung des Impulsbegriffs am Ende des Kontextes "Auf dem Weg in den Weltraum"
42 Ustd.	Summe		1

Kontext: Auf dem Weg in den Weltraum

Leitfrage: Wie kommt man zu physikalischen Erkenntnissen über unser Sonnensystem? Inhaltliche Schwerpunkte: Gravitation, Kräfte und Bewegungen, Energie und Impuls

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.
- (E3) mit Bezug auf Theorien, Modelle und Gesetzmäßigkeiten auf deduktive Weise Hypothesen generieren sowie Verfahren zu ihrer Überprüfung ableiten,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Aristotelisches Weltbild, Koperni- kanische Wende (3 Ustd.)	stellen Änderungen in den Vorstellungen zu Bewegungen und zum Sonnensystem beim Übergang vom Mittelalter zur Neuzeit dar (UF3, E7),	Arbeit mit dem Lehrbuch: Geozentrisches und heliozentri- sches Planetenmodell	Einstieg über Film zur Entwicklung des Raketenbaus und der Weltraumfahrt Besuch in einer Sternwarte, Planetarium Bochum Beobachtungen am Himmel Historie: Verschiedene Möglichkeiten der Interpretation der Beobachtungen
Planetenbewegungen und Kepler'sche Gesetze (5 Ustd.)	ermitteln mithilfe der Kepler´schen Gesetze und des Gravitationsgesetzes astronomische Größen (E6), beschreiben an Beispielen Veränderungen im Weltbild und in der Arbeitsweise der Naturwissenschaften, die durch die Arbeiten von Kopernikus, Kepler, Galilei und Newton initiiert wurden (E7, B3).	Drehbare Sternkarte und aktuelle astronomische Tabellen Animationen zur Darstellung der Planetenbewegungen	Orientierung am Himmel Beobachtungsaufgabe: Finden von Planeten am Nachthimmel Tycho Brahes Messungen, Keplers Schlussfolgerungen Benutzung geeigneter Apps
Newton'sches Gravitationsgesetz, Gravitationsfeld (6 Ustd.)	beschreiben Wechselwirkungen im Gravitationsfeld und verdeutlichen den Unterschied zwischen Feldkonzept und Kraftkonzept (UF2, E6),	Arbeit mit dem Lehrbuch, Recherche im Internet	Newton'sches Gravitationsgesetz als Zusammenfassung bzw. Äquivalent der Kepler'schen Gesetze Newton'sche "Mondrechnung" Anwendung des Newton'schen Gravitationsgesetzes und der Kepler'schen Gesetze zur Berechnung von Satellitenbahnen Feldbegriff diskutieren, Definition der Feldstärke über Messvorschrift "Kraft auf Probekörper"

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Kreisbewegungen (8 Ustd.)	analysieren und berechnen auftretende Kräfte bei Kreisbewegungen (E6),	Messung der Zentralkraft An dieser Stelle sollen das experimentell-erkundende Verfahren und das deduktive Verfahren zur Erkenntnisgewinnung am Beispiel der Herleitung der Gleichung für die Zentripetalkraft als zwei wesentliche Erkenntnismethoden der Physik bearbeitet werden.	Beschreibung von gleichförmigen Kreisbewegungen, Winkelgeschwindigkeit, Periode, Bahngeschwindigkeit, Frequenz Experimentell-erkundende Erarbeitung der Formeln für Zentripetalkraft und Zentripetalbeschleunigung: Herausstellen der Notwendigkeit der Konstanthaltung der restlichen Größen bei der experimentellen Bestimmung einer von mehreren anderen Größen abhängigen physikalischen Größe (hier bei der Bestimmung der Zentripetalkraft in Abhängigkeit von der Masse des rotierenden Körpers) Ergänzend: Deduktion der Formel für die Zentripetalbeschleunigung Massenbestimmungen im Planetensystem, Fluchtgeschwindigkeiten Bahnen von Satelliten und Planeten
Impuls und Impulserhaltung, Rückstoß (6 Ustd.)	verwenden Erhaltungssätze (Energie- und Impulsbilanzen), um Bewegungszustände zu erklären sowie Bewegungsgrößen zu berechnen (E3, E6), erläutern unterschiedliche Positionen zum Sinn aktueller Forschungsprogramme (z.B. Raumfahrt, Mobilität) und beziehen Stellung dazu (B2, B3).	Skateboards und Medizinball Wasserrakete Raketentriebwerke für Modellraketen ten Recherchen zu aktuellen Projekten von ESA und DLR, auch zur Finanzierung	Impuls und Rückstoß Bewegung einer Rakete im luftleeren Raum Untersuchungen mit einer Wasserrakete, Simulation des Fluges einer Rakete in einer ExcelTabelle Debatte über wissenschaftlichen Wert sowie Kosten und Nutzen ausgewählter Programme
28 Ustd.	Summe		

Kontext: Schall

Leitfrage: Wie lässt sich Schall physikalisch untersuchen?

Inhaltliche Schwerpunkte: Schwingungen und Wellen, Kräfte und Bewegungen, Energie und Impuls

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden, (UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien/Gesetzen und Basiskonzepten beschreiben und erläutern.

(K1) Fragestellungen, Untersuchungen, Experimente und Daten nach gegebenen Strukturen dokumentieren und stimmig rekonstruieren, auch mit Unterstützung digitaler Werkzeuge

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar/didaktische Hinweise
Entstehung und Ausbreitung von Schall (4 Ustd.)	erklären qualitativ die Ausbreitung mechanischer Wellen (Transversal- oder Longitudinalwelle) mit den Eigenschaften des Ausbreitungsmediums (E6),	Stimmgabeln, Lautsprecher, Frequenzgenerator, Frequenzmessgerät, Schallpegelmesser, rußgeschwärzte Glasplatte, Schreibstimmgabel, Klingel und Vakuumglocke	Erarbeitung der Grundgrößen zur Beschreibung von Schwingungen und Wellen: Frequenz (Periode) und Amplitude mittels der Höreindrücke des Menschen
Modelle der Wellen- ausbreitung (4 Ustd.)	beschreiben Schwingungen und Wellen als Störungen eines Gleichgewichts und identifizieren die dabei auftretenden Kräfte (UF1, UF4),	Lange Schraubenfeder, Wellenwanne	Entstehung von Longitudinal- und Transversal- wellen Ausbreitungsmedium, Möglichkeit der Ausbrei- tung longitudinaler. bzw. transversaler Schall- wellen in Gasen, Flüssigkeiten und festen Kör- pern
Erzwungene Schwingungen und Resonanz (2 Ustd.)	erläutern das Auftreten von Resonanz mithilfe von Wechselwirkung und Energie (UF1).	Stimmgabeln	Resonanz (auch Tacoma-Bridge, Millennium- Bridge) Resonanzkörper von Musikinstrumenten
10 Ustd.	Summe		1

2.1.2.2 Qualifikationsphase: Grundkurs

Inhaltsfeld: Quantenobjekte (GK)

Kontext: Erforschung des Photons

Leitfrage: Wie kann das Verhalten von Licht beschrieben und erklärt werden?

Inhaltliche Schwerpunkte: Photon (Wellenaspekt)

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern.

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar/didaktische Hinweise
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Beugung und Inter- ferenz Lichtwellen- länge, Lichtfre- quenz, Kreiswellen, ebene Wellen, Beugung, Brechung (7 Ustd.)	veranschaulichen mithilfe der <i>Wellenwanne</i> qualitativ unter Verwendung von Fachbegriffen auf der Grundlage des Huygens'schen Prinzips Kreiswellen, ebene Wellen sowie die Phänomene Beugung, Interferenz, Reflexion und Brechung (K3), bestimmen Wellenlängen und Frequenzen von Licht mit <i>Doppelspalt</i> und <i>Gitter</i> (E5),	Doppelspalt und Gitter, Wellenwanne quantitative Experimente mit Laserlicht	Ausgangspunkt: Beugung von Laserlicht Modellbildung mit Hilfe der Wellenwanne (ggf. als Schülerpräsentation) Bestimmung der Wellenlängen von Licht mit Doppelspalt und Gitter Sehr schön sichtbare Beugungsphänomene finden sich vielfach bei Meereswellen (s. Google-Earth)
Quantelung der Energie von Licht, Austrittsarbeit (7 Ustd.)	demonstrieren anhand eines Experiments zum Photoeffekt den Quantencharakter von Licht und bestimmen den Zusammenhang von Energie, Wellenlänge und Frequenz von Photonen sowie die Austrittsarbeit der Elektronen (E5, E2),	Photoeffekt Hallwachsversuch Vakuumphotozelle	Roter Faden: Von Hallwachs bis Elektronenbeugung Bestimmung des Planck'schen Wirkungsquantums und der Austrittsarbeit Hinweis: Formel für die max. kinetische Energie der Photoelektronen wird zunächst vorgegeben. Der Zusammenhang zwischen Spannung, Ladung und Überführungsarbeit wird ebenfalls vorgegeben und nur plausibel gemacht. Er muss an dieser Stelle nicht grundlegend hergeleitet werden
14 Ustd.	Summe		

Kontext: Erforschung des Elektrons

Leitfrage: Wie können physikalische Eigenschaften wie die Ladung und die Masse eines Elektrons gemessen werden? Inhaltliche Schwerpunkte: Elektron (Teilchenaspekt)

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern.

(UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,

- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Elementarladung (5 Ustd.)	erläutern anhand einer vereinfachten Version des <i>Millikanversuchs</i> die grundlegenden Ideen und Ergebnisse zur Bestimmung der Elementarladung (UF1, E5), untersuchen, ergänzend zum Realexperiment, Computersimulationen zum Verhalten von Quantenobjekten (E6).	schwebender Wattebausch Millikanversuch Schwebefeldmethode (keine Stokes´sche Reibung) Auch als Simulation möglich	Begriff des elektrischen Feldes in Analogie zum Gravitationsfeld besprechen, Definition der Feldstärke über die Kraft auf einen Probekörper, in diesem Fall die Ladung Homogenes elektrisches Feld im Plattenkondensator, Zusammenhangs zwischen Feldstärke im Plattenkondensator, Spannung und Abstand der Kondensatorplatten vorgeben und durch Auseinanderziehen der geladenen Platten demonstrieren
Elektronenmasse (7 Ustd.)	beschreiben Eigenschaften und Wirkungen homogener elektrischer und magnetischer Felder und erläutern deren Definitionsgleichungen. (UF2, UF1), bestimmen die Geschwindigkeitsänderung eines Ladungsträgers nach Durchlaufen einer elektrischen Spannung (UF2), modellieren Vorgänge im <i>Fadenstrahlrohr</i> (Energie der Elektronen, Lorentzkraft) mathematisch, variieren Parameter und leiten dafür deduktiv Schlussfolgerungen her, die sich experimentell überprüfen lassen, und ermitteln die Elektronenmasse (E6, E3, E5),	elm-Bestimmung mit dem Fadenstrahlrohr und Helmholtzspulenpaar auch Ablenkung des Strahls mit Permanentmagneten (Lorentzkraft) evtl. Stromwaage bei hinreichend zur Verfügung stehender Zeit) Messung der Stärke von Magnetfeldern mit der Hallsonde	Einführung der 3-Finger-Regel und Angabe der Gleichung für die Lorentzkraft: Einführung des Begriffs des magnetischen Feldes (in Analogie zu den beiden anderen Feldern durch Kraft auf Probekörper, in diesem Fall bewegte Ladung oder stromdurchflossener Leiter) und des Zusammenhangs zwischen magnetischer Kraft, Leiterlänge und Stromstärke. Vertiefung des Zusammenhangs zwischen Spannung, Ladung und Überführungsarbeit am Beispiel Elektronenkanone.

Streuung von Elektronen an Festkörpern, de Broglie- Wellenlänge (3 Ustd.)	erläutern die Aussage der de Broglie-Hypothese, wenden diese zur Erklärung des Beugungsbildes beim <i>Elektronenbeugungsexperiment</i> an und bestimmen die Wellenlänge der Elektronen (UF1, UF2, E4).	Experiment zur Elektronen- beugung an polykristallinem Graphit	Veranschaulichung der Bragg-Bedingung analog zur Gitterbeugung
15 Ustd.	Summe		

Kontext: Photonen und Elektronen als Quantenobjekte

Leitfrage: Kann das Verhalten von Elektronen und Photo-nen durch ein gemeinsames Modell beschrieben werden? Inhaltliche Schwerpunkte: Elektron und Photon (Teilchenaspekt, Wellenaspekt), Quantenobjekte und ihre Eigenschaften

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen
- (K4) sich mit anderen über physikalische Sachverhalte und Erkenntnisse kritisch-konstruktiv austauschen und dabei Behauptungen oder Beurteilungen durch Argumente belegen bzw. widerlegen.
- (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Licht und Materie (5 Ustd.)	erläutern am Beispiel der Quantenobjekte Elektron und Photon die Bedeutung von Modellen als grundlegende Erkenntniswerkzeuge in der Physik (E6, E7), verdeutlichen die Wahrscheinlichkeitsinterpretation für Quantenobjekte unter Verwendung geeigneter Darstellungen (Graphiken, Simulationsprogramme) (K3). zeigen an Beispielen die Grenzen und Gültigkeitsbereiche von Wellen- und Teilchenmodellen für Licht und Elektronen auf (B4, K4), beschreiben und diskutieren die Kontroverse um die Kopenhagener Deutung und den Welle-Teilchen-Dualismus (B4, K4).	Computersimulation Doppelspalt Photoeffekt	Reflexion der Bedeutung der Experimente für die Entwicklung der Quantenphysik
5 Ustd.	Summe		,

Inhaltsfeld: Elektrodynamik (GK)

Kontext: Energieversorgung und Transport mit Generatoren und Transformatoren

Leitfrage: Wie kann elektrische Energie gewonnen, verteilt und bereitgestellt werden?

Inhaltliche Schwerpunkte: Spannung und elektrische Energie, Induktion, Spannungswandlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

- (E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden,
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,
- (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Wandlung von me- chanischer in elekt- rische Energie:	erläutern am Beispiel der <i>Leiterschaukel</i> das Auftreten einer Induktionsspannung durch die Wirkung der Lorentzkraft auf bewegte Ladungsträger (UF1, E6),	bewegter Leiter im (homoge- nen) Magnetfeld - "Leiterschaukelversuch"	Definition der Spannung und Erläuterung anhand von Beispielen für Energieumwandlungsprozesse bei Ladungstransporten, Anwendungsbeispiele.
Elektromagnetische Induktion Induktionsspannung (5 Ustd.)	definieren die Spannung als Verhältnis von Energie und Ladung und bestimmen damit Energien bei elektrischen Leitungsvorgängen (UF2), bestimmen die relative Orientierung von Bewegungsrichtung eines Ladungsträgers, Magnetfeldrichtung und resultierender Kraftwirkung mithilfe einer Drei-Finger-Regel (UF2, E6), werten Messdaten, die mit einem <i>Oszilloskop</i> bzw. mit einem <i>Messwerterfassungssystem</i> gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und Spannungen aus (E2, E5).	Messung von Spannungen mit diversen Spannungsmessgeräten (nicht nur an der Leiterschaukel) Gedankenexperimente zur Überführungsarbeit, die an einer Ladung verrichtet wird. Deduktive Herleitung der Beziehung zwischen <i>U</i> , <i>v</i> und <i>B</i> .	Das Entstehen einer Induktionsspannung bei bewegtem Leiter im Magnetfeld wird mit Hilfe der Lorentzkraft erklärt, eine Beziehung zwischen Induktionsspannung, Leitergeschwindigkeit und Stärke des Magnetfeldes wird (deduktiv) hergeleitet. Die an der Leiterschaukel registrierten (zeitabhängigen) Induktionsspannungen werden mit Hilfe der hergeleiteten Beziehung auf das Zeit-Geschwindigkeit-Gesetz des bewegten Leiters zurückgeführt.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Technisch praktikable Generatoren: Erzeugung sinusförmiger Wechselspannungen (4 Ustd.)	recherchieren bei vorgegebenen Fragestellungen historische Vorstellungen und Experimente zu Induktionserscheinungen (K2), erläutern adressatenbezogen Zielsetzungen, Aufbauten und Ergebnisse von Experimenten im Bereich der Elektrodynamik jeweils sprachlich angemessen und verständlich (K3),	Internetquellen, Lehrbücher, Firmeninformationen, Filme und Applets zum Generatorprinzip Experimente mit drehenden Leiterschleifen in (näherungs- weise homogenen) Magnetfel- dern, Wechselstromgeneratoren	Hier bietet es sich an, arbeitsteilige Präsentationen auch unter Einbezug von Realexperimenten anfertigen zu lassen.
	erläutern das Entstehen sinusförmiger Wechselspannungen in Generatoren (E2, E6), werten Messdaten, die mit einem <i>Oszilloskop</i> bzw. mit einem <i>Messwerterfassungssystem</i> gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und Spannungen aus (E2, E5). führen Induktionserscheinungen an einer <i>Leiterschleife</i> auf die beiden grundlegenden Ursachen "zeitlich veränderliches Magnetfeld" bzw. "zeitlich veränderliche (effektive) Fläche" zurück (UF3, UF4),	Messung und Registrierung von Induktionsspannungen mit Os- zilloskop und digitalem Messwerterfassungssystem	Der Zusammenhang zwischen induzierter Spannung und zeitlicher Veränderung der senkrecht vom Magnetfeld durchsetzten Fläche wird "deduktiv" erschlossen.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Nutzbarmachung elektrischer Energie durch "Transforma- tion"	erläutern adressatenbezogen Zielsetzungen, Aufbauten und Ergebnisse von Experimenten im Bereich der Elektrodynamik jeweils sprachlich angemessen und verständlich (K3),	diverse "Netzteile" von Elektro- Kleingeräten (mit klassischem Transformator)	Der Transformator wird eingeführt und die Übersetzungsverhältnisse der Spannungen experimentell ermittelt. Dies kann auch durch einen Schülervortrag erfolgen (experimentell und medial gestützt).
Transformator	ermitteln die Übersetzungsverhältnisse von Span- nung und Stromstärke beim <i>Transformator</i> (UF1,	Internetquellen, Lehrbücher, Firmeninformationen	
(5 Ustd.)	UF2).	Demo-Aufbautransformator mit	
	geben Parameter von Transformatoren zur gezielten Veränderung einer elektrischen Wechselspannung an (E4),	geeigneten Messgeräten	
	werten Messdaten, die mit einem <i>Oszilloskop</i> bzw. mit einem <i>Messwerterfassungssystem</i> gewonnen wurden, im Hinblick auf Zeiten, Frequenzen und Spannungen aus (E2, E5).	ruhende Induktionsspule in wechselstromdurchflossener Feldspule - mit Messwerterfassungssystem zur zeitaufgelösten Registrierung der Induktionsspannung und des zeitlichen Verlaufs der Stärke des magnetischen Feldes	Der Zusammenhang zwischen induzierter Spannung und zeitlicher Veränderung der Stärke des magnetischen Feldes wird experimentell im Lehrerversuch erschlossen.
	führen Induktionserscheinungen an einer <i>Leiterschleife</i> auf die beiden grundlegenden Ursachen "zeitlich veränderliches Magnetfeld" bzw. "zeitlich veränderliche (effektive) Fläche" zurück (UF3, UF4),		Die registrierten Messdiagramme werden von den SuS eigenständig ausgewertet.
Energieerhaltung	verwenden ein physikalisches <i>Modellexperiment zu</i> Freileitungen, um technologische Prinzipien der	Modellexperiment (z.B. mit	Hier bietet sich ein arbeitsteiliges Gruppenpuzzle an,
Ohm'sche "Verluste"	Bereitstellung und Weiterleitung von elektrischer	Hilfe von Aufbautransformato- ren) zur Energieübertragung und	in dem Modellexperimente einbezogen werden.
(4 Ustd.)	Energie zu demonstrieren und zu erklären (K3), bewerten die Notwendigkeit eines geeigneten Transformierens der Wechselspannung für die ef- fektive Übertragung elektrischer Energie über große Entfernungen (B1),	zur Bestimmung der "Ohm'schen Verluste" bei der Übertragung elektrischer Energie bei unter- schiedlich hohen Spannungen	
	zeigen den Einfluss und die Anwendung physikalischer Grundlagen in Lebenswelt und Technik am Beispiel der Bereitstellung und Weiterleitung elektrischer Energie auf (UF4),		
	beurteilen Vor- und Nachteile verschiedener Möglichkeiten zur Übertragung elektrischer Energie über große Entfernungen (B2, B1, B4).		

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
18 Ustd.	Summe		

Kontext: Wirbelströme im Alltag

Leitfrage: Wie kann man Wirbelströme technisch nutzen?

Inhaltliche Schwerpunkte: Induktion

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Lenz'sche Regel (4 Ustd.)	erläutern anhand des <i>Thomson´schen Ringversuchs</i> die Lenz´sche Regel (E5, UF4), bewerten bei technischen Prozessen das Auftreten erwünschter bzw. nicht erwünschter Wirbelströme (B1),	Freihandexperiment: Untersuchung der Relativbewegung eines aufgehängten Metallrings und eines starken Stabmagneten	Ausgehend von kognitiven Konflikten bei den Ring- versuchen wird die Lenz´sche Regel erarbeitet
		Thomson'scher Ringversuch diverse technische und spieleri- sche Anwendungen, z.B. Dämp- fungselement an einer Präzisi- onswaage, Wirbelstrombremse, "fallender Magnet" im Alu-Rohr.	Erarbeitung von Anwendungsbeispielen zur Lenz'schen Regel (z.B. Wirbelstrombremse bei Fahr- zeugen oder an der Kreissäge)
4 Ustd.	Summe		

Inhaltsfeld: Strahlung und Materie (GK)

Kontext: Erforschung des Mikro- und Makrokosmos

Leitfrage: Wie gewinnt man Informationen zum Aufbau der Materie?

Inhaltliche Schwerpunkte: Energiequantelung der Atomhülle, Spektrum der elektromagnetischen Strahlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(E2) kriteriengeleitet beobachten und messen sowie auch komplexe Apparaturen für Beobachtungen und Messungen erläutern und sachgerecht verwenden,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medi- um	Kommentar
Kern-Hülle- Modell (2 Ustd.)	erläutern, vergleichen und beurteilen Mo- delle zur Struktur von Atomen und Mate- riebausteinen (E6, UF3, B4),	Literaturrecherche, Schul- buch	Ausgewählte Beispiele für Atommodelle
Energieniveaus der Atomhülle (2 Ustd.)	erklären die Energie absorbierter und emittierter Photonen mit den unterschied- lichen Energieniveaus in der Atomhülle (UF1, E6),	Erzeugung von Linien- spektren mithilfe von Gasentladungslampen	Deutung der Linienspektren

Inhalt	Kompetenzen	Experiment / Medi-	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler	um	
Quantenhafte Emission und Absorption von Photonen (3 Ustd.)	erläutern die Bedeutung von Flammenfärbung und Linienspektren bzw. Spektralanalyse, die Ergebnisse des Franck-Hertz-Versuches sowie die charakteristischen Röntgenspektren für die Entwicklung von Modellen der diskreten Energiezustände von Elektronen in der Atomhülle (E2, E5, E6, E7),	Franck-Hertz-Versuch	Es kann das Bohr'sche Atommodell ange- sprochen werden (ohne Rechnungen)
Röntgenstrah- lung (3 Ustd.)	erläutern die Bedeutung von Flammenfärbung und Linienspektren bzw. Spektralanalyse, die Ergebnisse des Franck-Hertz-Versuches sowie die charakteristischen Röntgenspektren für die Entwicklung von Modellen der diskreten Energiezustände von Elektronen in der Atomhülle (E2, E5, E6, E7),	Aufnahme von Röntgen- spektren (kann mit inter- aktiven Bildschirmexperi- menten (IBE) oder Lehr- buch geschehen, falls kei- ne Schulröntgeneinrich- tung vorhanden ist)	Im Zuge der "Elemente der Quantenphysik" kann die Röntgenstrahlung bereits als Um- kehrung des Photoeffekts bearbeitet wer- den Mögliche Ergänzungen: Bremsspektrum mit h-Bestimmung / Bragg-Reflexion
Sternspektren und Fraunhofer- linien (3 Ustd.)	interpretieren Spektraltafeln des Sonnen- spektrums im Hinblick auf die in der Son- nen- und Erdatmosphäre vorhandenen Stoffe (K3, K1), erklären Sternspektren und Fraunhoferli- nien (UF1, E5, K2), stellen dar, wie mit spektroskopischen Methoden Informationen über die Entste- hung und den Aufbau des Weltalls ge- wonnen werden können (E2, K1),	Flammenfärbung Darstellung des Sonnen- spektrums mit seinen Fraunhoferlinien Spektralanalyse	u. a. Durchstrahlung einer Na-Flamme mit Na- und Hg-Licht (Schattenbildung)
13 Ustd.	Summe		

Kontext: Mensch und Strahlung

Leitfrage: Wie wirkt Strahlung auf den Menschen?

Inhaltliche Schwerpunkte: Kernumwandlungen, Ionisierende Strahlung, Spektrum der elektromagnetischen Strahlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(B3) an Beispielen von Konfliktsituationen mit physikalisch-technischen Hintergründen kontroverse Ziele und Interessen sowie die Folgen wissenschaftlicher Forschung aufzeigen und bewerten,

(B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Strahlungsarten (2 Ustd.)	unterscheiden α -, β -, γ -Strahlung und Röntgenstrahlung sowie Neutronen- und Schwerionenstrahlung (UF3),	Recherche	Wiederholung und Vertiefung aus der Sek. I
	erläutern den Nachweis unterschiedlicher Arten ionisierender Strahlung mithilfe von Absorptionsexperimenten (E4, E5),	Absorptionsexperimente zu α -, β -, γ -Strahlung	
	bewerten an ausgewählten Beispielen Rollen und Beiträge von Physikerinnen und Physikern zu Erkenntnissen in der Kernund Elementarteilchenphysik (B1, B3),		
Elementumwand- lung	erläutern den Begriff Radioaktivität und beschreiben zugehörige Kern- umwandlungsprozesse (UF1, K1),	Nuklidkarte	
(1 Ustd.)			

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Detektoren (3 Ustd.)	erläutern den Aufbau und die Funktionsweise von Nachweisgeräten für ionisierende Strahlung (<i>Geiger-Müller-Zählrohr</i>) und bestimmen Halbwertszeiten und Zählraten (UF1, E2),	Geiger-Müller-Zählrohr	An dieser Stelle können Hinweise auf Halbleiterdetektoren gegeben werden.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Biologische Wirkung ionisierender Strahlung und Energieaufnahme im menschlichen Gewebe Dosimetrie (3 Ustd.)	beschreiben Wirkungen von ionisierender und elektromagnetischer Strahlung auf Materie und lebende Organismen (UF1), bereiten Informationen über wesentliche biologisch-medizinische Anwendungen und Wirkungen von ionisierender Strahlung für unterschiedliche Adressaten auf (K2, K3, B3, B4), begründen in einfachen Modellen wesentliche biologisch-medizinische Wirkungen von ionisierender Strahlung mit deren typischen physikalischen Eigenschaften (E6, UF4), erläutern das Vorkommen künstlicher und natürlicher Strahlung, ordnen deren Wirkung auf den Menschen mithilfe einfacher dosimetrischer Begriffe ein und bewerten Schutzmaßnahmen im Hinblick auf die Strahlenbelastungen des Menschen im Alltag (B1, K2). bewerten Gefahren und Nutzen der Anwendung physikalischer Prozesse, u. a. von ionisierender Strahlung, auf der Basis medizinischer, gesellschaftlicher und wirtschaftlicher Gegebenheiten (B3, B4) bewerten Gefahren und Nutzen der Anwenderschaftlicher Gefahren und	ggf. Einsatz eines Films / eines Videos	Sinnvolle Beispiele sind die Nutzung von ionisierender Strahlung zur Diagnose und zur Therapie bei Krankheiten des Menschen (von Lebewesen) sowie zur Kontrolle technische Anlagen. Erläuterung von einfachen dosimetrischen Begriffe: Aktivität, Energiedosis, Äquivalentdosis
	dung ionisierender Strahlung unter Abwä- gung unterschiedlicher Kriterien (B3, B4),		29

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
9 Ustd.	Summe		

Kontext: Forschung am CERN und DESY

Leitfrage: Was sind die kleinsten Bausteine der Materie? Inhaltliche Schwerpunkte: Standardmodell der Elementarteilchen Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Kernbausteine und Elementar- teilchen (4 Ustd.)	erläutern mithilfe des aktuellen Standardmodells den Aufbau der Kernbausteine und erklären mit ihm Phänomene der Kernphysik (UF3, E6), erklären an einfachen Beispielen Teilchenumwandlungen im Standardmodell (UF1). recherchieren in Fachzeitschriften, Zeitungsartikeln bzw. Veröffentlichungen von Forschungseinrichtungen zu ausgewählten aktuellen Entwicklungen in der Elementarteilchenphysik (K2).	In diesem Bereich sind i. d. R. keine Realexperimente für Schulen möglich. Es z.B. kann auf Internetseiten des CERN und DESY zurückgegriffen werden.	Mögliche Schwerpunktsetzung: Paarerzeugung, Paarvernichtung,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
(Virtuelles) Photon als Austauschteilchen der elektromagnetischen Wechselwirkung Konzept der Austauschteilchen vs. Feldkonzept (2 Ustd.)	vergleichen in Grundprinzipien das Modell des Photons als Austauschteilchen für die elektromagnetische Wechselwirkung exemplarisch für fundamentale Wechselwirkungen mit dem Modell des Feldes (E6).	Lehrbuch, Animationen	Veranschaulichung der Austauschwechselwirkung mithilfe geeigneter mechanischer Modelle, auch Problematik dieser Modelle thematisieren
6 Ustd.	Summe		

Inhaltsfeld: Relativität von Raum und Zeit (GK)

Kontext: *Navigationssysteme*Leitfrage: Welchen Einfluss hat Bewegung auf den Ablauf der Zeit?
Inhaltliche Schwerpunkte: Konstanz der Lichtgeschwindigkeit, Zeitdilatation

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à	Die Schülerinnen und Schüler		
45 min)			

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Relativität der Zeit (5 Ustd.)	interpretieren das <i>Michelson-Morley-Experiment</i> als ein Indiz für die Konstanz der Lichtgeschwindigkeit (UF4),	Experiment von Michel- son und Morley (Compu- tersimulation)	Ausgangsproblem: Exaktheit der Positionsbestimmung mit Navigationssystemen
	erklären anschaulich mit der <i>Lichtuhr</i> grundlegende Prinzipien der speziellen Relativitätstheorie und ermitteln quantitativ die Formel für die Zeitdilatation (E6, E7),	Lichtuhr (Gedankenexperiment / Computersimulation) Myonenzerfall (Experimentepool der Universität Wuppertal)	Begründung der Hypothese von der Konstanz der Lichtgeschwindigkeit mit dem Ausgang des Michelson-Morley- Experiments
	erläutern qualitativ den <i>Myonenzerfalls</i> in der Erdatmosphäre als experimentellen Beleg für die von der Relativitätstheorie vorhergesagte Zeitdilatation (E5, UF1).		Herleitung der Formel für die Zeitdilatation am Beispiel einer "bewegten Licht- uhr". Der Myonenzerfall in der Erdatmosphä-
	erläutern die relativistische Längenkontraktion über eine Plausibilitätsbetrachtung (K3),		re dient als experimentelle Bestätigung der Zeitdilatation. Betrachtet man das Bezugssystem der Myonen als ruhend,
	begründen mit der Lichtgeschwindigkeit als Obergrenze für Geschwindigkeiten von Ob- jekten, dass eine additive Überlagerung von Geschwindigkeiten nur für "kleine" Ge- schwindigkeiten gilt (UF2),		kann die Längenkontraktion der Atmosphäre plausibel gemacht werden. Die Formel für die Längenkontraktion
	erläutern die Bedeutung der Konstanz der Lichtgeschwindigkeit als Ausgangspunkt für die Entwicklung der speziellen Relativitäts- theorie (UF1),		wird angegeben.
5 Ustd.	Summe		.1

Kontext: Teilchenbeschleuniger
Leitfrage: Ist die Masse bewegter Teilchen konstant?

Inhaltliche Schwerpunkte: Veränderlichkeit der Masse, Energie-Masse Äquivalenz

- Kompetenzschwerpunkte: Schülerinnen und Schüler können (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.
- (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
"Schnelle" Ladungsträger in E- und B-Feldern (2 Ustd.)	erläutern die Funktionsweise eines Zyklotrons und argumentieren zu den Grenzen einer Verwendung zur Beschleunigung von Ladungsträgern bei Berücksichtigung relativistischer Effekte (K4, UF4),	Zyklotron (in einer Simulation mit und ohne Massenveränderlichkeit)	Der Einfluss der Massenzunahme wird in der Simulation durch das "Aus-dem-Takt-Geraten" eines beschleunigten Teilchens im Zyklotron ohne Rechnung veranschaulicht.
Ruhemasse und dynamische Masse (4 Ustd.)	erläutern die Energie-Masse Äquivalenz (UF1). zeigen die Bedeutung der Beziehung <i>E=mc</i> ² für die Kernspaltung und -fusion auf (B1, B3)	Film / Video	Die Formeln für die dynamische Masse und $E=mc^2$ werden als deduktiv herleitbar angegeben. Erzeugung und Vernichtung von Teilchen, Hier können Texte und Filme zu Hiroshima und Nagasaki eingesetzt werden.
6 Ustd.	Summe		

Kontext: Das heutige Weltbild

Leitfrage: Welchen Beitrag liefert die Relativitätstheorie zur Erklärung unserer Welt?
Inhaltliche Schwerpunkte: Konstanz der Lichtgeschwindigkeit, Zeitdilatation, Veränderlichkeit der Masse, Energie-Masse Äquivalenz

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Gegenseitige Bedingung von Raum und Zeit	diskutieren die Bedeutung von Schlüsselex- perimenten bei physikalischen Paradigmen- wechseln an Beispielen aus der Relativitäts- theorie (B4, E7),	Lehrbuch, Film / Video	
(2 Ustd.)	beschreiben Konsequenzen der relativisti- schen Einflüsse auf Raum und Zeit anhand anschaulicher und einfacher Abbildungen (K3)		
2 Ustd.	Summe		1

2.1.2.3 Qualifikationsphase: Leistungskurs

Inhaltsfeld: Relativitätstheorie (LK)

Kontext: Satellitennavigation – Zeitmessung ist nicht absolut

Leitfrage: Welchen Einfluss hat Bewegung auf den Ablauf der Zeit?

Inhaltliche Schwerpunkte: Konstanz der Lichtgeschwindigkeit, Problem der Gleichzeitigkeit

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
Konstanz der Lichtgeschwindigkeit und Problem der Gleichzeitigkeit Inertialsysteme Relativität der Gleichzeitigkeit (4 Ustd.)	begründen mit dem Ausgang des Michelson- Morley-Experiments die Konstanz der Lichtge- schwindigkeit (UF4, E5, E6), erläutern das Problem der relativen Gleichzeitig- keit mit in zwei verschiedenen Inertialsystemen jeweils synchronisierten Uhren (UF2), begründen mit der Lichtgeschwindigkeit als Obergrenze für Geschwindigkeiten von Objekten Auswirkungen auf die additive Überlagerung von Geschwindigkeiten (UF2).	Experiment von Michelson und Morley (Computersimulation) Relativität der Gleichzeitig- keit (Video / Film)	Ausgangsproblem: Exaktheit der Positionsbestimmung mit Navigationssystemen Begründung der Hypothese von der Konstanz der Lichtgeschwindigkeit mit dem Ausgang des Michelson- und Morley-Experiments (Computersimulation). Das Additionstheorem für relativistische Geschwindigkeiten kann ergänzend ohne Herleitung angegeben werden.
4 Ustd.	Summe		

Kontext: Höhenstrahlung

Leitfrage: Warum erreichen Myonen aus der oberen Atmo-sphäre die Erdoberfläche?

Inhaltliche Schwerpunkte: Zeitdilatation und Längenkontraktion

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

Inhalt (Ustd. à 45 min)	Kompetenzen	Experiment / Medium	Kommentar
	Die Schülerinnen und Schüler		
Zeitdilatation und relativistischer Faktor (2 Ustd., zusätzlich Exkursion)	leiten mithilfe der Konstanz der Lichtgeschwindigkeit und des Modells Lichtuhr quantitativ die Formel für die Zeitdilatation her (E5), reflektieren die Nützlichkeit des Modells Lichtuhr hinsichtlich der Herleitung des relativistischen Faktors (E7). erläutern die Bedeutung der Konstanz der Lichtgeschwindigkeit als Ausgangspunkt für die Entwicklung der speziellen Relativitätstheorie (UF1)	Lichtuhr (Gedankenexperiment / Computersimulation) Myonenzerfall (Experimentepool der Universität – ggfs. Exkursion an eine Universität)	Mit der Lichtuhr wird der relativistische Faktor γ hergeleitet. Der Myonenzerfall in der Erdatmosphäre dient als eine experimentelle Bestätigung der Zeitdilatation.
Längenkontraktion (2 Ustd.)	begründen den Ansatz zur Herleitung der Längenkontraktion (E6), erläutern die relativistischen Phänomene Zeitdilatation und Längenkontraktion anhand des Nachweises von in der oberen Erdatmosphäre entstehenden Myonen (UF1), beschreiben Konsequenzen der relativistischen Einflüsse auf Raum und Zeit anhand anschaulicher und einfacher Abbildungen (K3),	Myonenzerfall (Experimente- pool der Universität – ggfs. Exkursion an eine Universi- tät) – s. o.	Der Myonenzerfall dient als experimentelle Bestätigung der Längenkontraktion (im Vergleich zur Zeitdilatation) – s. o. Herleitung der Formel für die Längenkontraktion
4 Ustd.	Summe		·

Kontext: Teilchenbeschleuniger – Warum Teilchen aus dem Takt geraten

Leitfrage: Ist die Masse bewegter Teilchen konstant?
Inhaltliche Schwerpunkte: Relativistische Massenzunahme, Energie-Masse-Beziehung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unter-

scheiden und begründet gewichten,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
"Schnelle" Ladungs- träger in E- und B-Fel- dern (4 Ustd.)	erläutern auf der Grundlage historischer Dokumente ein Experiment (Bertozzi-Versuch) zum Nachweis der relativistischen Massenzunahme (K2, K3),	Bertozzi-Experiment (anhand von Literatur)	Hier würde sich eine Schülerpräsentation des Bertozzi- Experiments anbieten. Der Einfluss der Massenzunahme wird in einer Simulation durch das "Aus-dem-Takt-Geraten" eines beschleunigten Teilchens im Zyklotron ohne Rechnung veranschaulicht. Die Formel für die dynamische Masse wird als deduktiv herleitbar angegeben.
Ruhemasse und dy- namische Masse (2 Ustd.)	erläutern die Energie-Masse-Beziehung (UF1) berechnen die relativistische kinetische Energie von Teilchen mithilfe der Energie-Masse- Beziehung (UF2)		Die Differenz aus dynamischer Masse und Ruhemasse wird als Maß für die kinetische Energie eines Körpers identifiziert.

Annihilation (2 Ustd.)	chen und Antiteilchen (UF4), bestimmen und bewerten den bei der Annihilation von Teilchen und Antiteilchen frei werdenden Energiebetrag (E7, B1), beurteilen die Bedeutung der Beziehung E=mc² für Erforschung und technische Nutzung von Kernspaltung und Kernfusion (B1, B3),	T G II G	onsenergie bei den entsprechenden Prozessen. Es können Filme zu Hiroshima und Nagasaki eingesetzt werden. Erzeugung und Vernichtung von Teilchen
Bindungsenergie im	beschreiben die Bedeutung der Energie-Masse-	Historische Aufnahme von	Interpretation des Zusammenhangs zwischen Bindungs-
Atomkern	Äguivalenz hinsichtlich der Annihilation von Teil-	Teilchenbahnen	energie pro Nukleon und der Kernspaltungs- bzw. Kernfusi-

Kontext: Satellitennavigation – Zeitmessung unter dem Einfluss von Geschwindigkeit und Gravitation

Leitfrage: Beeinflusst Gravitation den Ablauf der Zeit? Inhaltliche Schwerpunkte: Der Einfluss der Gravitation auf die Zeitmessung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Gravitation und Zeitmessung (2 Ustd.)	beschreiben qualitativ den Einfluss der Gravitation auf die Zeitmessung (UF4)	Der Gang zweier Atomuhren in unterschiedlicher Höhe in einem Raum (früheres Expe- rimente der PTB Braun- schweig) Flug von Atomuhren um die Erde (Video)	Dieser Unterrichtsabschnitt soll lediglich einen ersten – qualitativ orientierten – Einblick in die Äquivalenz von Gravitation und gleichmäßig beschleunigten Bezugssystemen geben. Elemente des Kontextes Satellitennavigation können genutzt werden, um sowohl die Zeitdilatation (infolge der unterschiedlichen Geschwindigkeiten der Satelliten) als auch die Gravitationswirkung (infolge ihres Aufenthalts

(2 Ustd.) 4 Ustd.	Summe	Bewegung Film / Video	
Die Gleichheit von träger und schwerer Masse (im Rahmen der heutigen Mess- genauigkeit)	veranschaulichen mithilfe eines einfachen gegenständlichen Modells den durch die Einwirkung von massebehafteten Körpern hervorgerufenen Einfluss der Gravitation auf die Zeitmessung sowie die "Krümmung des Raums" (K3).	Einsteins Fahrstuhl- Gedankenexperiment Das Zwillingsparadoxon (mit Beschleunigungsphasen und Phasen der gleichförmigen	An dieser Stelle könnte eine Schülerpräsentation erfolgen (mithilfe der Nutzung von Informationen und Animationen aus dem Internet)
			an verschiedenen Orten im Gravitationsfeld der Erde) zu verdeutlichen.

Kontext: Das heutige Weltbild

Leitfrage: Welchen Beitrag liefert die Relativitätstheorie zur Erklärung unserer Welt?
Inhaltliche Schwerpunkte: Konstanz der Lichtgeschwindigkeit, Problem der Gleichzeitigkeit, Zeitdilatation und Längenkontraktion, Relativistische Massenzunahme, Energie-Masse-Beziehung, Der Einfluss der Gravitation auf die Zeitmessung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt (Ustd. à 45 min) Gegenseitige Bedingung von Raum und Zeit (2 Ustd.)	Kompetenzen Die Schülerinnen und Schüler bewerten Auswirkungen der Relativitätstheorie auf die Veränderung des physikalischen Weltbilds (B4).	Experiment / Medium Lehrbuchtexte, Internetrecherche	Kommentar Ggf. Schülervortrag
2 Ustd.	Summe		

Inhaltsfeld: *Elektrik (LK)*

Kontext: Untersuchung von Elektronen

Leitfrage: Wie können physikalische Eigenschaften wie die Ladung und die Masse eines Elektrons gemessen werden? Inhaltliche Schwerpunkte: Eigenschaften elektrischer Ladungen und ihrer Felder, Bewegung von Ladungsträgern in elektrischen und magnetischen Feldern

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,
- (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,
- (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,
- (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt	Kompetenzen	Experiment / Medi-	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler	um	

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medi- um	Kommentar
Grundlagen: Ladungstrennung, Ladungsträger (4 Ustd.)	erklären elektrostatische Phänomene und Influenz mithilfe grundlegender Eigenschaften elektrischer Ladungen (UF2, E6),	einfache Versuche zur Reibungselektrizität – Anziehung / Abstoßung, halbquantitative Versuche mit Hilfe eines Elektrome- terverstärkers: Zwei aneinander gerie- bene Kunststoffstäbe aus unterschiedlichen Materi- alien tragen betragsmä- ßig gleiche, aber entge- gengesetzte Ladungen, Influenzversuche	An dieser Stelle sollte ein Rückgriff auf die S I erfolgen. Das Elektron soll als (ein) Träger der negativen Ladung benannt und seine Eigenschaften untersucht werden.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medi- um	Kommentar
Bestimmung der Elementarladung: elektrische Felder, Feldlinien potentielle Energie im elektrischen Feld, Spannung Kondensator Elementarladung (10 Ustd.)	beschreiben Eigenschaften und Wirkungen homogener elektrischer und magnetischer Felder und erläutern die Definitionsgleichungen der entsprechenden Feldstärken (UF2, UF1), erläutern und veranschaulichen die Aussagen, Idealisierungen und Grenzen von Feldlinienmodellen, nutzen Feldlinienmodelle zur Veranschaulichung typischer Felder und interpretieren Feldlinienbilder (K3, E6, B4),	Skizzen zum prinzipiellen Aufbau des Millikanversuchs, realer Versuchsaufbau oder entsprechende Medien (z. B: RCL (remote control laboratory), einfache Versuche und visuelle Medien zur Veranschaulichung elektrischer Felder im Feldlinienmodell, Plattenkondensator (homogenes E-Feld),	Die Versuchsidee "eines" Millikanversuchs wird erarbeitet. Der Begriff des elektrischen Feldes und das Feldlinienmodell werden eingeführt. Die elektrische Feldstärke in einem Punkt eines elektrischen Feldes, der Begriff "homogenes Feld" und die Spannung werden definiert.
	leiten physikalische Gesetze (u.a. die im homogenen elektrischen Feld gültige Beziehung zwischen Spannung und Feldstärke und den Term für die Lorentzkraft) aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2), entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1),	evtl. Apparatur zur Messung der Feldstärke gemäß der Definition, Spannungsmessung am Plattenkondensator, Bestimmung der Elementarladung mit dem Millikanversuch	Zusammenhang zwischen E und U im homogenen Feld Bestimmung der Elementarladung mit Diskussion der Messgenauigkeit An dieser Stelle sollten Übungsaufgaben erfolgen, z.B. auch zum Coulomb'schen Gesetz. Dieses kann auch nur per Plausibilitätsbetrachtung eingeführt werden.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medi- um	Kommentar
Bestimmung der Masse eines Elektrons: magnetische Felder, Feldlinien, potentielle Energie im elektrischen Feld, Energie bewegter Ladungsträger, Elektronenmasse (10 Ustd.)	erläutern an Beispielen den Stellenwert experimenteller Verfahren bei der Definition physikalischer Größen (elektrische und magnetische Feldstärke) und geben Kriterien zu deren Beurteilung an (z.B. Genauigkeit, Reproduzierbarkeit, Unabhängigkeit von Ort und Zeit) (B1, B4), treffen im Bereich Elektrik Entscheidungen für die Auswahl von Messgeräten (Empfindlichkeit, Genauigkeit, Auflösung und Messrate) im Hinblick auf eine vorgegebene Problemstellung (B1), beschreiben qualitativ die Erzeugung eines Elektronenstrahls in einer Elektronenstrahlröhre (UF1, K3), ermitteln die Geschwindigkeitsänderung eines Ladungsträgers nach Durchlaufen einer Spannung (auch relativistisch) (UF2, UF4, B1),	Fadenstrahlrohr (zunächst) zur Erarbeitung der Versuchsidee, (z.B.) Stromwaage zur Demonstration der Kraftwirkung auf stromdurchflossene Leiter im Magnetfeld sowie zur Veranschaulichung der Definition der magnetischen Feldstärke, Versuche mit z.B. Oszilloskop, Fadenstrahlrohr, altem (Monochrom-) Röhrenmonitor o. ä. zur Demonstration der Lorentzkraft, Fadenstrahlrohr zur e/m – Bestimmung (das Problem der Messung der magnetischen Feldstärke wird ausgelagert.)	Die Frage nach der Masse eines Elektrons führt zu weiteren Überlegungen. Als Versuchsidee wird (evtl. in Anlehnung an astronomischen Berechnungen in der EF) die Auswertung der Daten einer erzwungenen Kreisbewegung des Teilchens erarbeitet. Dazu wird der Begriff des magnetischen Feldes eingeführt sowie die Veranschaulichung magnetischer Felder (inkl. Feldlinienmodell) erarbeitet. Definition der magnetischen Feldstärke, Definition des homogenen Magnetfeldes, Kraft auf stromdurchflossene Leiter im Magnetfeld, Herleitung der Formel für die Lorentzkraft,

Inhalt	Kompetenzen	Experiment / Medi-	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler	um	
	erläutern den Feldbegriff und zeigen dabei Gemeinsamkeiten und Unterschiede zwi- schen Gravitationsfeld, elektrischem und magnetischem Feld auf (UF3, E6),		
	entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1),		Ein Verfahren zur Beschleunigung der Elektronen sowie zur Bestimmung ihrer Geschwindigkeit wird erarbeitet.
	erläutern und veranschaulichen die Aussagen, Idealisierungen und Grenzen von Feldlinienmodellen, nutzen Feldlinienmodelle zur Veranschaulichung typischer Felder und interpretieren Feldlinienbilder (K3, E6, B4),		
	bestimmen die relative Orientierung von Bewegungsrichtung eines Ladungsträ- gers, Magnetfeldrichtung und resultieren- der Kraftwirkung mithilfe einer Drei-Finger- Regel (UF2, E6),		
	leiten physikalische Gesetze (Term für die Lorentzkraft) aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2),		
	beschreiben qualitativ und quantitativ die Bewegung von Ladungsträgern in homo- genen elektrischen und magnetischen Feldern sowie in gekreuzten Feldern (Wien-Filter, Hall-Effekt) (E1, E2, E3, E4, E5 UF1, UF4),		49
	schließen aus spezifischen Bahnkurvendaten bei der e/m-Bestimmung und beim Massenspektrometer auf wirkende Kräfte sowie Eigenschaften von Feldern und bewegten Ladungsträgern (E5, UF2),		

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medi- um	Kommentar
24 Ustd.	Summe		

Kontext: Aufbau und Funktionsweise wichtiger Versuchs- und Messapparaturen

Leitfrage: Wie und warum werden physikalische Größen meistens elektrisch erfasst und wie werden sie verarbeitet? Inhaltliche Schwerpunkte: Eigenschaften elektrischer Ladungen und ihrer Felder "Bewegung von Ladungsträgern in elektrischen und magnetischen Feldern

Kompetenzschwerpunkte: Schülerinnen und Schüler können

- (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,
- (UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.
- (E1) in unterschiedlichen Kontexten physikalische Probleme identifizieren, analysieren und in Form physikalischer Fragestellungen präzisieren.
- (E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,
- (E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,
- (K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,
- (B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten.
- (B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Anwendungen in Forschung und Technik: Bewegung von Ladungsträgern in Feldern (12 Ustd.)	beschreiben qualitativ und quantitativ die Bewegung von Ladungsträgern in homogenen elektrischen und magnetischen Feldern sowie in gekreuzten Feldern (Wien-Filter, Hall-Effekt) (E1, E2, E3, E4, E5 UF1, UF4), erstellen, bei Variation mehrerer Parameter, Tabellen und Diagramme zur Darstellung von Messwerten aus dem Bereich der Elektrik (K1, K3, UF3), beschreiben qualitativ die Erzeugung eines Elektronenstrahls in einer Elektronenstrahlröhre (UF1, K3), ermitteln die Geschwindigkeitsänderung eines Ladungsträgers nach Durchlaufen einer Spannung (auch relativistisch) (UF2, UF4, B1), schließen aus spezifischen Bahnkurvendaten beim Massenspektrometer auf wirkende Kräfte sowie Eigenschaften von Feldern und bewegten Ladungsträgern, (E5, UF2), erläutern den Feldbegriff und zeigen dabei Gemeinsamkeiten und Unterschiede zwischen Gravitationsfeld, elektrischem und magnetischem Feld auf (UF3, E6), erläutern den Einfluss der relativistischen Massenzunahme auf die Bewegung geladener Teilchen im Zyklotron (E6, UF4), leiten physikalische Gesetze aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2),	Hallsonde, Halleffektgerät, diverse Spulen, deren Felder vermessen werden (insbesondere lange Spulen und Helmholtzspulen), Elektronenstrahlablenkröhre visuelle Medien und Computersimulationen (ggf. RCLs) zum Massenspektrometer, Zyklotron und evtl. weiteren Teilchenbeschleunigern	Das Problem der Messung der Stärke des magnetischen Feldes der Helmholtzspulen (e/m – Bestimmung) wird wieder aufgegriffen, Vorstellung des Aufbaus einer Hallsonde und Erarbeitung der Funktionsweise einer Hallsonde, Veranschaulichung mit dem Halleffektgerät (Silber), Kalibrierung einer Hallsonde, Messungen mit der Hallsonde, u. a. nachträgliche Vermessung des Helmholtzspulenfeldes, Bestimmung der magnetischen Feldkonstante, Arbeits- und Funktionsweisen sowie die Verwendungszwecke diverser Elektronenröhren, Teilchenbeschleuniger und eines Massenspektrometers werden untersucht.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
	entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experi- mentelles Vorgehen sinnvoller ist (B4, UF2, E1),		
	wählen Definitionsgleichungen zusammenge- setzter physikalischer Größen sowie physika- lische Gesetze (u.a. Coulomb'sches Gesetz, Kraft auf einen stromdurchflossenen Leiter im Magnetfeld, Lorentzkraft, Spannung im ho- mogenen <i>E</i> -Feld) problembezogen aus (UF2),		

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Moderne mess- technische Ver- fahren sowie Hilfsmittel zur Mathematisie- rung: Auf- und Entla- dung von Konden- satoren, Energie des elektrischen Fel- des (10 Ustd.)	erläutern an Beispielen den Stellenwert experimenteller Verfahren bei der Definition physikalischer Größen (elektrische und magnetische Feldstärke) und geben Kriterien zu deren Beurteilung an (z.B. Genauigkeit, Reproduzierbarkeit, Unabhängigkeit von Ort und Zeit) (B1, B4), erläutern und veranschaulichen die Aussagen, Idealisierungen und Grenzen von Feldlinienmodellen, nutzen Feldlinienmodelle zur Veranschaulichung typischer Felder und interpretieren Feldlinienbilder (K3, E6, B4), entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1), wählen Definitionsgleichungen zusammengesetzter physikalischer Größen sowie physikalische Gesetze (u.a. Coulomb'sches Gesetz, Kraft auf einen stromdurchflossenen Leiter im Magnetfeld, Lorentzkraft, Spannung im homogenen E-Feld) problembezogen aus (UF2), leiten physikalische Gesetze aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2), ermitteln die in elektrischen bzw. magnetischen Feldern gespeicherte Energie (Kondensator) (UF2), beschreiben qualitativ und quantitativ, bei vorgegebenen Lösungsansätzen, Ladungsund Entladungsvorgänge in Kondensatoren (E4, E5, E6),	diverse Kondensatoren (als Ladungs-/ Energiespeicher), Aufbaukondensatoren mit der Möglichkeit die Plattenfläche und den Plattenabstand zu variieren, statische Voltmeter bzw. Elektrometermessverstärker, Schülerversuche zur Aufund Entladung von Kondensatoren sowohl mit großen Kapazitäten (Messungen mit Multimeter) als auch mit kleineren Kapazitäten (Messungen mit Hilfe von Messwerterfassungssystemen), Computer oder GTR/CAS-Rechner zur Messwertverarbeitung	Kondensatoren werden als Ladungs-/ Energiespeicher vorgestellt (z.B. bei elektronischen Geräten wie Computern). Die (Speicher-) Kapazität wird definiert und der Zusammenhang zwischen Kapazität, Plattenabstand und Plattenfläche für den Plattenkondensator (deduktiv mit Hilfe der Grundgleichung des elektrischen Feldes) ermittelt. Plausibilitätsbetrachtung zur Grundgleichung des elektrischen Feldes im Feldlinienmodell, Ermittlung der elektrischen Feldkonstante (evtl. Messung), Auf- und Entladevorgänge bei Kondensatoren werden messtechnisch erfasst, computerbasiert ausgewertet und mithilfe von Differentialgleichungen beschrieben. deduktive Herleitung der im elektrischen Feld eines Kondensators gespeicherten elektrischen Energie

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
45 (11111)	treffen im Bereich Elektrik Entscheidungen für die Auswahl von Messgeräten (Empfindlich- keit, Genauigkeit, Auflösung und Messrate) im Hinblick auf eine vorgegebene Problem- stellung (B1),		
	wählen begründet mathematische Werkzeuge zur Darstellung und Auswertung von Messwerten im Bereich der Elektrik (auch computergestützte graphische Darstellungen, Linearisierungsverfahren, Kurvenanpassungen), wenden diese an und bewerten die Güte der Messergebnisse (E5, B4),		
22 Ustd.	Summe		

Kontext: Erzeugung, Verteilung und Bereitstellung elektrischer Energie

Leitfrage: Wie kann elektrische Energie gewonnen, verteilt und bereitgestellt werden?

Inhaltliche Schwerpunkte: Elektromagnetische Induktion

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

	halt	Kompetenzen	Experiment / Medium	Kommentar
١,	Jstd. à	Die Schülerinnen und Schüler		
4	5 min)			

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Induktion, das grundlegende Prinzip bei der Versorgung mit elektrischer Energie: Induktionsvorgänge, Induktionsgesetz, Lenz'sche Regel, Energie des magnetischen Feldes (22 Ustd.)	entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1), wählen Definitionsgleichungen zusammengesetzter physikalischer Größen sowie physikalische Gesetze (u.a. Coulomb'sches Gesetz, Kraft auf einen stromdurchflossenen Leiter im Magnetfeld, Lorentzkraft, Spannung im homogenen E-Feld) problembezogen aus (UF2), leiten physikalische Gesetze aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2), planen und realisieren Experimente zum Nachweis der Teilaussagen des Induktionsgesetzes (E2, E4, E5), führen das Auftreten einer Induktionsspannung auf die zeitliche Änderung der von einem Leiter überstrichenen gerichteten Fläche in einem Magnetfeld zurück (u.a. bei der Erzeugung einer Wechselspannung) (E6), erstellen, bei Variation mehrerer Parameter, Tabellen und Diagramme zur Darstellung von Messwerten aus dem Bereich der Elektrik (K1, K3, UF3), treffen im Bereich Elektrik Entscheidungen für die Auswahl von Messgeräten (Empfindlichkeit, Genauigkeit, Auflösung und Messrate) im Hinblick auf eine vorgegebene Problemstellung (B1), identifizieren Induktionsvorgänge aufgrund der zeitlichen Änderung der magnetischen Feldgröße <i>B</i> in Anwendungs- und Alltagssituationen (E1, E6, UF4),	Medien zur Information über prinzipielle Verfahren zur Erzeugung, Verteilung und Bereitstellung elektrischer Energie, Bewegung eines Leiters im Magnetfeld - Leiterschaukel, einfaches elektrodynamisches Mikrofon, Gleich- und Wechselspannungsgeneratoren (vereinfachte Funktionsmodelle für Unterrichtszwecke) quantitativer Versuch zur elektromagnetischen Induktion bei Änderung der Feldgröße B, registrierende Messung von B(t) und Uind(t), "Aufbau-" Transformatoren zur Spannungswandlung	Leiterschaukelversuch evtl. auch im Hinblick auf die Registrierung einer gedämpften mechanischen Schwingung auswertbar, Gleich- und Wechselspannungsgeneratoren werden nur qualitativ behandelt. Das Induktionsgesetz in seiner allgemeinen Form wird erarbeitet: 1. Flächenänderung (deduktive Herleitung) 2. Änderung der Feldgröße B (quantitatives Experiment) Drehung einer Leiterschleife (qualitative Betrachtung) Der magnetische Fluss wird definiert, das Induktionsgesetz als Zusammenfassung und Verallgemeinerung der Ergebnisse formuliert. qualitative Deutung des Versuchsergebnisses zur Selbstinduktion

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
	wählen begründet mathematische Werkzeuge zur Darstellung und Auswertung von Messwerten im Bereich der Elektrik (auch computer-gestützte graphische Darstellungen, Linearisierungsverfahren, Kurvenanpassungen), wenden diese an und bewerten die Güte der Messergebnisse (E5, B4), ermitteln die in magnetischen Feldern gespeicherte Energie (Spule) (UF2), bestimmen die Richtungen von Induktionsströmen mithilfe der Lenz'schen Regel (UF2, UF4, E6), begründen die Lenz'sche Regel mithilfe des Energie- und des Wechselwirkungskonzeptes (E6, K4),	Modellversuch zu einer "Überlandleitung" (aus CrNi-Draht) mit zwei "Trafo-Stationen", zur Untersuchung der Energieverluste bei unterschiedlich hohen Spannungen, Versuch (qualitativ und quantitativ) zur Demonstration der Selbstinduktion (registrierende Messung und Vergleich der Ein- und Ausschaltströme in parallelen Stromkreisen mit rein ohmscher bzw. mit induktiver Last), Versuche zur Demonstration der Wirkung von Wirbelströmen, diverse "Ringversuche"	Deduktive Herleitung des Terms für die Selbstinduktionsspannung einer langen Spule (ausgehend vom Induktionsgesetz), Interpretation des Vorzeichens mit Hilfe der Lenz'schen Regel Definition der Induktivität, messtechnische Erfassung und computerbasierte Auswertung von Einund Ausschaltvorgängen bei Spulen deduktive Herleitung der im magnetischen Feld einer Spule gespeicherten magnetischen Energie
22 Ustd.	Summe		1

Kontext: Physikalische Grundlagen der drahtlosen Nachrichtenübermittlung

Leitfrage: Wie können Nachrichten ohne Materietransport übermittelt werden? Inhaltliche Schwerpunkte: Elektromagnetische Schwingungen und Wellen

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(E4) Experimente mit komplexen Versuchsplänen und Versuchsaufbauten, auch historisch bedeutsame Experimente, mit Bezug auf ihre Zielsetzungen erläutern und diese zielbezogen unter Beachtung fachlicher Qualitätskriterien durchführen,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

(B4) begründet die Möglichkeiten und Grenzen physikalischer Problemlösungen und Sichtweisen bei innerfachlichen, naturwissenschaftlichen und gesellschaftlichen Fragestellungen bewerten.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Der elektromagnetische Schwingkreis – das Basiselement der Nachrichtentechnik: Elektromagnetische Schwingungen im RLC-Kreis, Energieumwandlungsprozesse im RLC-Kreis (12 Ustd.)	erläutern die Erzeugung elektromagnetischer Schwingungen, erstellen aussagekräftige Diagramme und werten diese aus (E2, E4, E5, B1), treffen im Bereich Elektrik Entscheidungen für die Auswahl von Messgeräten (Empfindlichkeit, Genauigkeit, Auflösung und Messrate) im Hinblick auf eine vorgegebene Problemstellung (B1), erläutern qualitativ die bei einer ungedämpften elektromagnetischen Schwingung in der Spule und am Kondensator ablaufenden physikalischen Prozesse (UF1, UF2), beschreiben den Schwingvorgang im RLC-Kreis qualitativ als Energieumwandlungsprozess und benennen wesentliche Ursachen für die Dämpfung (UF1, UF2, E5),	MW-Radio aus Aufbauteilen der Elektriksammlung mit der Mög- lichkeit, die modulierte Träger- schwingung (z.B. oszillosko- pisch) zu registrieren, einfache Resonanzversuche (auch aus der Mechanik / Akus- tik),	Zur Einbindung der Inhalte in den Kontext wird zunächst ein Mittelwellenradio aus Aufbauteilen der Elektriksammlung vorgestellt. Der Schwingkreis als zentrale Funktionseinheit des MW-Radios: Es kann leicht gezeigt werden, dass durch Veränderung von L bzw. C der Schwingkreis so "abgestimmt" werden kann, dass (z.B. oszilloskopisch) eine modulierte Trägerschwingung registriert werden kann, also der Schwingkreis "von außen" angeregt wird. Die Analogie zu mechanischen Resonanzversuchen wird aufgezeigt.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
	wählen begründet mathematische Werkzeuge zur Darstellung und Auswertung von Messwerten im Bereich der Elektrik (auch computer-gestützte graphische Darstellungen, Linearisierungsverfahren, Kurvenanpassungen), wenden diese an und bewerten die Güte der Messergebnisse (E5, B4), entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1),	RLC - Serienschwingkreis insbesondere mit registrierenden Messverfahren und computergestützten Auswerteverfahren, ggf. Meißner- oder Dreipunkt-Rückkopplungsschaltung zur Erzeugung / Demonstration entdämpfter elektromagnetischer Schwingungen	Die zentrale Funktionseinheit "Schwingkreis" wird genauer untersucht. Spannungen und Ströme im RCL – Kreis werden zeitaufgelöst registriert, die Diagramme sind Grundlage für die qualitative Beschreibung der Vorgänge in Spule und Kondensator. Quantitativ wird nur die ungedämpfte Schwingung beschrieben (inkl. der Herleitung der Thomsonformel).
	wählen Definitionsgleichungen zusammen- gesetzter physikalischer Größen sowie physikalische Gesetze problembezogen aus (UF2), leiten physikalische Gesetze aus geeigne- ten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2).		Die Möglichkeiten zur mathematischen Beschreibung gedämpfter Schwingungen sowie Möglichkeiten der Entdämpfung / Rückkopplung können kurz und rein qualitativ angesprochen werden.

tinnerung an die Antegung der Sich mit einem angentischen Wechselfeld über eine "Antenne" zu elektrischen bzw. magnetischen Wirbelfelds bei B- bzw. E-Feldänderung und die Ausbreitung elektro-magnetischer Wellen aus räumlich und Informations- über-tragung durch elektromagnetische Wellen (UF1, UF4, E6), erläutern anhand schematischer Darstellungen Grundzüge der Nutzung elektromagnetischer Wellen and die Lichtgeschwindigkeit (E2, E4, E5). (16 Ustd.) nen (offenen) Schwingkreis (UF1, UF2, E6), erläutern qualitativ die Entstehung eines elektroshen bzw. magnetischen Wirbelfelds ber eine "Antenne" zu Schwingungen anregen lässt, dim-Wellen-Sender mit Zubehör (Empfängerdipol, Feldindikatorlampe), Visuelle Medien zur Veranschaulichung der zeitlichen Ausbreitung werden erarbeitet. Übergang vom Schwingkreis zum Hertz'schen Dipol durch Verkleinerung von Informationen (K2, K3, E6). ermitteln auf der Grundlage von Brechungs Beugungs- und Interferenzerscheinungen (mit Licht- und Mikrowellen) die Wellenlängen und die Lichtgeschwindigkeit (E2, E4, E5). beschreiben die Phänomene Reflexion, Brechung, Beugung und Interferenzi mit Wellenmodell und begründen sie qualitativ mithilfe des Huygens'schen Prinzips (UF1, E6), erläutern anhand schematischer Darstellungen mit Licht- und Mikrowellen) die Wellenlängen und die Lichtgeschwindigkeit (E2, E4, E5). beschreiben die Phänomene Reflexion, Brechung, Beugung und Interferenze in Wellenmodell und begründen sie qualitativ mithilfe des Huygens'schen Prinzips (UF1, E6), erläutern anhand schematischer Darstellungen won Informationen (K2, K3, E6). ermitteln auf der Grundlage von Brechungs Beugung und Interferenzerscheinungen (mit Licht- und Mikrowellen) die Wellenlängen und die Lichtgeschwindigkeit (E2, E4, E5). beschreiben die Phänomene Reflexion, Brechung, Beugung und Interferenzer im Wellennodell und begründen sie qualitativ mithilfe des Huygens'schen Prinzips (UF1, E6), erläutern auhand schematischer Darstellungen die ktromagnetischen Wellen (E7, E4), versuch zur Veranschaulichung der	Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
64 (K3, UF1),	Über-tragung von Information und Energie: Entstehung und Ausbreitung elektro-magnetischer Wellen, Energietransport und Informations-über-tragung durch elektro-magnetische Wellen, (16 Ustd.)	erläutern qualitativ die Entstehung eines elektrischen bzw. magnetischen Wirbelfelds bei <i>B</i> - bzw. <i>E</i> -Feldänderung und die Ausbreitung einer elektromagnetischen Welle (UF1, UF4, E6), beschreiben qualitativ die lineare Ausbreitung harmonischer Wellen als räumlich und zeitlich periodischen Vorgang (UF1, E6), erläutern anhand schematischer Darstellungen Grundzüge der Nutzung elektromagnetischer Trägerwellen zur Übertragung von Informationen (K2, K3, E6). ermitteln auf der Grundlage von Brechungs, Beugungs- und Interferenzerscheinungen (mit Licht- und Mikrowellen) die Wellenlängen und die Lichtgeschwindigkeit (E2, E4, E5). beschreiben die Phänomene Reflexion, Brechung, Beugung und Interferenz im Wellenmodell und begründen sie qualitativ mithilfe des Huygens'schen Prinzips (UF1, E6). erläutern konstruktive und destruktive Interferenz sowie die entsprechenden Bedin-	magnetischen Wechselfeld über eine "Antenne" zu Schwingungen anregen lässt, dm-Wellen-Sender mit Zubehör (Empfängerdipol, Feldindikatorlampe), Visuelle Medien zur Veranschaulichung der zeitlichen Änderung der E- und B-Felder beim Hertz'schen Dipol, entsprechende Computersimulationen, Ringentladungsröhre (zur Vertiefung der elektromagnetischen Induktion), visuelle Medien zur magnetoelektrischen Induktion, Visuelle Medien zur Veranschaulichung der Ausbreitung einer elektromagnetischen Welle, entsprechende Computersimulationen, Versuche mit dem dm-Wellen-	MW-Radio-Schwingkreises durch "Radiowellen" zur Motivation der Erforschung sogenannter elektromagnetischer Wellen, Das Phänomen der elektromagnetische Welle, ihre Erzeugung und Ausbreitung werden erarbeitet. Übergang vom Schwingkreis zum Hertz'schen Dipol durch Verkleinerung von L und C, Überlegungen zum "Ausbreitungsmechanismus" elektromagnetischer Wellen: Induktion findet auch ohne Leiter ("Induktionsschleife") statt! (Z.B.) Versuch zur Demonstration des Magnetfeldes um stromdurchflossene Leiter, über die ein Kondensator aufgeladen wird. Auch im Bereich zwischen den Kondensatorplatten existiert ein

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
	entscheiden für Problemstellungen aus der Elektrik, ob ein deduktives oder ein experimentelles Vorgehen sinnvoller ist (B4, UF2, E1), leiten physikalische Gesetze aus geeigneten Definitionen und bekannten Gesetzen deduktiv her (E6, UF2), beschreiben die Interferenz an Doppelspalt und Gitter im Wellenmodell und leiten die entsprechenden Terme für die Lage der jeweiligen Maxima n-ter Ordnung her (E6, UF1, UF2), wählen Definitionsgleichungen zusammengesetzter physikalischer Größen sowie physikalische Gesetze problembezogen aus (UF2), erstellen, bei Variation mehrerer Parameter, Tabellen und Diagramme zur Darstellung von Messwerten (K1, K3, UF3).	Visuelle Medien zur Veranschaulichung der Ausbreitung einer linearen (harmonischen) Welle, auch Wellenmaschine zur Erinnerung an mechanische Wellen, entsprechende Computersimulationen, Wellenwanne Mikrowellensender / - empfänger mit Gerätesatz für Beugungs-, Brechungs- und Interferenzexperimente, Interferenz-, Beugungs- und Brechungsexperimente mit (Laser-) Licht an Doppelspalt und Gitter (quantitativ) – sowie z.B. an Kanten, dünnen Schichten, (qualitativ)	Beugungs-, Brechungs- und Interferenzerscheinungen zum Nachweis des Wellencharakters elektromagnetischer Wellen,
28 Ustd.	Summe		

Inhaltsfeld: Quantenphysik (LK)

Kontext: Erforschung des Photons

Leitfrage: Besteht Licht doch aus Teilchen?

Inhaltliche Schwerpunkte: Licht und Elektronen als Quantenobjekte, Welle-Teilchen-Dualismus, Quantenphysik und klassische Physik **Kompetenzschwerpunkte:** Schülerinnen und Schüler können

(UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Lichtelektrischer Effekt (1 Ustd.)	diskutieren und begründen das Versagen der klassischen Modelle bei der Deutung quantenphysikalischer Prozesse (K4, E6) legen am Beispiel des Photoeffekts und seiner Deutung dar, dass neue physikalische Experimente und Phänomene zur Veränderung des physikalischen Weltbildes bzw. zur Erweiterung oder Neubegründung physikalischer Theorien und Modelle führen können (E7),	Entladung einer positiv bzw. negativ geladenen (frisch geschmirgelten) Zinkplatte mithilfe des Lichts einer Hg-Dampf-Lampe (ohne und mit UV-absorbierender Glasscheibe)	Qualitative Demonstration des Photo- effekts

Inhalt (Ustd. à	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
45 min)	Die Gertalerinnen und Gertaler		
Teilcheneigen- schaften von Photonen Planck´sches Wirkungsquan- tum (7 Ustd.)	erläutern die qualitativen Vorhersagen der klassischen Elektrodynamik zur Energie von Photoelektronen (bezogen auf die Frequenz und Intensität des Lichts) (UF2, E3), erläutern den Widerspruch der experimentellen Befunde zum Photoeffekt zur klassischen Physik und nutzen zur Erklärung die Einstein'sche Lichtquantenhypothese (E6, E1),	1. Versuch zur h- Bestimmung: Gegenspan- nungsmethode (Hg-Linien mit Cs-Diode) 2. Versuch zur h- Bestimmung: Mit Simulati- onsprogramm (in häuslicher Arbeit)	Spannungsbestimmung mithilfe Kondensatoraufladung erwähnen
	diskutieren das Auftreten eines Paradigmen- wechsels in der Physik am Beispiel der quan- tenmechanischen Beschreibung von Licht und Elektronen im Vergleich zur Beschrei- bung mit klassischen Modellen (B2, E7),		Wenn genügend Zeit zur Verfügung steht, kann an dieser Stelle auch der Compton-Effekt behandelt werden: Bedeutung der Anwendbarkeit der (mechanischen) Stoßgesetze hinsicht-
	beschreiben und erläutern Aufbau und Funktionsweise von komplexen Versuchsaufbauten (u.a. zur h-Bestimmung und zur Elektronenbeugung) (K3, K2), ermitteln aus den experimentellen Daten eines Versuchs zum Photoeffekt das Planck´sche Wirkungsquantum (E5, E6),		lich der Zuordnung eines Impulses für Photonen Keine detaillierte (vollständig relativis- tische) Rechnung im Unterricht not- wendig, Rechnung ggf. als Referat vorstellen lassen
10 Ustd.	Summe		1

Kontext: Röntgenstrahlung, Erforschung des Photons Leitfrage: Was ist Röntgenstrahlung? Inhaltliche Schwerpunkte: Licht und Elektronen als Quantenobjekte

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medi- um	Kommentar
Röntgenröhre Röntgenspektrum (2 Ustd.)	beschreiben den Aufbau einer Röntgenröhre (UF1),	Röntgenröhre der Schulröntgeneinrichtung Sollte keine Röntgenröhre zur Verfügung stehen, kann mit einem interaktiven Bildschirmexperiment (IBE) gearbeitet werden (z.B. http://www.mackspace.de/unterricht/simulationen_physik/quantenphysik/sv/roentgen.phpoder http://www.unidue.de/physik/ap/iabe/roentgen_b10/roentgen_b10_uebersicht.html)	Die Behandlung der Röntgenstrahlung erscheint an dieser Stelle als "Einschub" in die Reihe zur Quantenphysik sinnvoll, obwohl sie auch zu anderen Sachbereichen Querverbindungen hat und dort durchgeführt werden könnte (z.B. "Physik der Atomhülle") Zu diesem Zeitpunkt müssen kurze Sachinformationen zum Aufbau der Atomhülle und den Energiezuständen der Hüllelektronen gegeben (recherchiert) werden. Das IBE sollte für die häusliche Arbeit genutzt werden.

Kompetenzen Die Schülerinnen und Schüler	Experiment / Medi- um	Kommentar
erläutern die Bragg-Reflexion an einem Ein- kristall und leiten die Bragg'sche Reflexionsbe- dingung her (E6),	Aufnahme eines Röntgen- spektrums (Winkel-Inten- sitätsdiagramm vs. Wel- lenlängen- Intensitätsdiagramm)	Die Bragg'sche Reflexionsbedingung basiert auf Welleninterpretation, die Registrierung der Röntgenstrahlung mithilfe des Detektors hat den Teil- chenaspekt im Vordergrund
deuten die Entstehung der kurzwelligen Röntgenstrahlung als Umkehrung des Photoeffekts (E6),		Eine zweite Bestimmungsmethode für das Planck'sche Wirkungsquan- tum
		Schülerreferate mit Präsentationen zur Debye-Scherrer-Methode
	Die Schülerinnen und Schüler erläutern die Bragg-Reflexion an einem Einkristall und leiten die Bragg'sche Reflexionsbedingung her (E6), deuten die Entstehung der kurzwelligen Röntgenstrahlung als Umkehrung des Photoeffekts	Die Schülerinnen und Schüler erläutern die Bragg-Reflexion an einem Einkristall und leiten die Bragg'sche Reflexionsbedingung her (E6), deuten die Entstehung der kurzwelligen Röntgenstrahlung als Umkehrung des Photoeffekts um Aufnahme eines Röntgenspektrums (Winkel-Intensitätsdiagramm vs. Wellenlängen-Intensitätsdiagramm)

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medi- um	Kommentar
Röntgenröhre in Medizin und Technik (2 Ustd.)	führen Recherchen zu komplexeren Fragestellungen der Quantenphysik durch und präsentieren die Ergebnisse (K2, K3),	Film / Video / Foto Schülervorträge auf fachlich angemessenem Niveau (mit adäquaten fachsprachlichen Formulierungen)	Schülerreferate mit Präsentationen anhand Literatur- und Internetrecherchen Ggf. Exkursion zum Röntgenmuseum in Lennep Ggf. Exkursion zur radiologischen Abteilung des Krankenhauses (die aber auch in Rahmen der Kernphysik (s. dort: "Biologische Wirkung ionisierender Strahlung") durchgeführt werden kann)
9 Ustd.	Summe		

Kontext: Erforschung des Elektrons

Leitfrage: Kann das Verhalten von Elektronen und Photo-nen durch ein gemeinsames Modell beschrieben werden? Inhaltliche Schwerpunkte: Welle-Teilchen-Dualismus

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(K3) physikalische Sachverhalte und Arbeitsergebnisse unter Verwendung situationsangemessener Medien und Darstellungsformen adressatengerecht präsentieren,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Wellencharakter von Elektronen (2 Ustd.)	interpretieren experimentelle Beobachtungen an der Elektronenbeugungsröhre mit den Welleneigenschaften von Elektronen (E1, E5, E6),	Qualitative Demonstrationen mit der Elektronenbeugungsröhre Qualitative Demonstrationen mithilfe RCL (Uni Kaiserslautern: http://rcl-munich.informatik.unibw-muenchen.de/)	Hinweise auf erlaubte nichtrelativistische Betrachtung (bei der verwendeten Elektronenbeugungsröhre der Schule)
Streuung und Beugung von Elektronen De Broglie- Hypothese (4 Ustd.)	beschreiben und erläutern Aufbau und Funktionsweise von komplexen Versuchs-aufbauten (u.a. zur h-Bestimmung und zur Elektronenbeugung) (K3, K2), erklären die de Broglie-Hypothese am Beispiel von Elektronen (UF1),	Quantitative Messung mit der Elektronenbeugungs- röhre	Herausstellen der Bedeutung der Bragg'schen Reflexionsbedingung für (Röntgen-) Photonen wie für Elektronen mit Blick auf den Wellenaspekt von Quantenobjekten Dabei Betonung der herausragenden Bedeutung der de Broglie-Gleichung für die quantitative Beschreibung der (lichtschnellen und nicht lichtschneller) Quantenobjekte

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
6 Ustd.	Summe		

Kontext: Die Welt kleinster Dimensionen – Mikroobjekte und Quantentheorie

Leitfrage: Was ist anders im Mikrokosmos?

Inhaltliche Schwerpunkte: Welle-Teilchen-Dualismus und Wahrscheinlichkeitsinterpretation, Quantenphysik und klassische Physik

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medi- um	Kommentar
linearer Potential- topf Energiewerte im	deuten das Quadrat der Wellenfunktion qualitativ als Maß für die Aufenthaltswahrscheinlichkeit von Elektronen (UF1, UF4),		Auf die Anwendbarkeit des Potenti- altopf-Modells bei Farbstoffmolekü- len wird hingewiesen.
linearen Potential- topf (4 Ustd.)	ermitteln die Wellenlänge und die Energiewerte von im linearen Potentialtopf gebundenen Elektronen (UF2, E6).		Die Anwendbarkeit des (mechanischen) Modells der stehenden Welle kann insofern bestätigt werden, als dass die für die stehenden Wellen sich ergebende DGI mit derjenigen der (zeitunabhängigen) Schrödinger-DGI strukturell übereinstimmt.
			Ein Ausblick auf die Schrödinger- Gleichung genügt.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medi- um	Kommentar
Wellenfunktion und Aufenthalts- wahrscheinlichkeit (4 Ustd.)	erläutern die Aufhebung des Welle-Teilchen- Dualismus durch die Wahrscheinlichkeitsinter- pretation (UF1, UF4), erläutern die Bedeutung von Gedankenexperi- menten und Simulationsprogrammen zur Er- kenntnisgewinnung bei der Untersuchung von Quantenobjekten (E6, E7).	Demonstration des Durchgangs eines einzelnen Quantenobjekts durch einen Doppelspalt mithilfe eines Simulationsprogramms und mithilfe von Videos	
	erläutern bei Quantenobjekten das Auftreten oder Verschwinden eines Interferenzmusters mit dem Begriff der Komplementarität (UF1, E3),		
	diskutieren das Auftreten eines Paradigmen- wechsels in der Physik am Beispiel der quan- tenmechanischen Beschreibung von Licht und Elektronen im Vergleich zur Beschreibung mit klassischen Modellen (B2, E7),		
	stellen anhand geeigneter Phänomene dar, wann Licht durch ein Wellenmodell bzw. ein Teilchenmodell beschrieben werden kann (UF1, K3, B1),		

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medi- um	Kommentar
Heisenberg´sche Unschärferelation (2 Ustd.)	erläutern die Aussagen und die Konsequenzen der Heisenberg'schen Unschärferelation (Ort-Impuls, Energie-Zeit) an Beispielen (UF1, K3), bewerten den Einfluss der Quantenphysik im Hinblick auf Veränderungen des Weltbildes und auf Grundannahmen zur physikalischen Erkenntnis (B4, E7).		Die Heisenberg'sche Unschärferelation kann (aus fachlicher Sicht) plausibel gemacht werden aufgrund des sich aus der Interferenzbedingung ergebenden Querimpulses eines Quantenobjekts, wenn dieses einen Spalt passiert.
10 Ustd.	Summe		

Inhaltsfeld: Atom-, Kern- und Elementarteilchenphysik (LK)

Kontext: Geschichte der Atommodelle, Lichtquellen und ihr Licht

Leitfrage: Wie gewinnt man Informationen zum Aufbau der Materie?

Inhaltliche Schwerpunkte: Atomaufbau

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF1) physikalische Phänomene und Zusammenhänge unter Verwendung von Theorien, übergeordneten Prinzipien / Gesetzen und Basiskonzepten beschreiben und erläutern,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

(E7) naturwissenschaftliches Arbeiten reflektieren sowie Veränderungen im Weltbild und in Denk- und Arbeitsweisen in ihrer historischen und kulturellen Entwicklung darstellen.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Atomaufbau: Kern-Hülle-Modell (2 Ustd.)	geben wesentliche Schritte in der historischen Entwicklung der Atommodelle bis hin zum Kern-Hülle-Modell wieder (UF1),	Recherche in Literatur und Internet	Diverse Atommodelle (Antike bis Anfang 20. Jhd.)
		Rutherford'scher Streuver- such	Per Arbeitsblatt oder Applet (z.B http://www.schulphysik.de/java/physle t/applets/rutherford.html)
Energiequante- lung der Hüllelekt- ronen (3 Ustd.)	erklären Linienspektren in Emission und Absorption sowie den Franck-Hertz-Versuch mit der Energiequantelung in der Atomhülle (E5),	Linienspektren, Franck- Hertz-Versuch	Linienspektren deuten auf diskrete Energien hin

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Linienspektren (3 Ustd.)	stellen die Bedeutung des Franck-Hertz- Versuchs und der Experimente zu Linien- spektren in Bezug auf die historische Bedeu- tung des Bohr'schen Atommodells dar (E7).	Durchstrahlung einer Na- Flamme mit Na- und Hg- Licht (Schattenbildung), Linienspektren von H	Demonstrationsversuch, Arbeitsblatt
Bohr'sche Postulate (2 Ustd.)	formulieren geeignete Kriterien zur Beurteilung des Bohr'schen Atommodells aus der Perspektive der klassischen und der Quantenphysik (B1, B4),	Literatur, Arbeitsblatt	Berechnung der Energieniveaus, Bohr'scher Radius
10 Ustd.	Summe		,

Kontext: Physik in der Medizin (Bildgebende Verfahren, Radiologie)

Leitfrage: Wie nutzt man Strahlung in der Medizin? Inhaltliche Schwerpunkte: Ionisierende Strahlung, Radioaktiver Zerfall

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,

(E6) Modelle entwickeln sowie physikalisch-technische Prozesse mithilfe von theoretischen Modellen, mathematischen Modellierungen, Gedankenexperimenten und Simulationen erklären oder vorhersagen,

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Ionisierende Strahlung: Detektoren (3 Ustd.)	benennen Geiger-Müller-Zählrohr und Halb- leiterdetektor als experimentelle Nachweis- möglichkeiten für ionisierende Strahlung und unterscheiden diese hinsichtlich ihrer Möglichkeiten zur Messung von Energien (E6),	Geiger-Müller-Zählrohr, Arbeitsblatt Nebelkammer	Ggf. Schülermessungen mit Zählrohren (Alltagsgegenstände, Nulleffekt, Präparate etc.) Demonstration der Nebelkammer, ggf. Schülerbausatz Material zu Halbleiterdetektoren

Inhalt (Ustd. à	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
45 min)	Die Schalenmen und Schaler		
Strahlungsarten	erklären die Ablenkbarkeit von ionisieren- den Strahlen in elektrischen und magneti- schen Feldern sowie die Ionisierungsfähig-	Absorption von α-, β-, γ- Strahlung	Ggf. Absorption und Ablenkung in Schülerexperimenten
(5 Ustd.)	keit und Durchdringungsfähigkeit mit ihren Eigenschaften (UF3),	Ablenkung von β-Strahlen im Magnetfeld	
	erklären die Entstehung des Bremsspekt- rums und des charakteristischen Spektrums der Röntgenstrahlung (UF1),	Literatur (zur Röntgen- , Neutronen- und Schwerio- nenstrahlung)	
	benennen Geiger-Müller-Zählrohr und Halb- leiterdetektor als experimentelle Nachweis- möglichkeiten für ionisierende Strahlung und unterscheiden diese hinsichtlich ihrer Möglichkeiten zur Messung von Energien (E6),	g,	
	erläutern das Absorptionsgesetz für Gamma-Strahlung, auch für verschiedene Energien (UF3),		
Dosimetrie	erläutern in allgemein verständlicher Form bedeutsame Größen der Dosimetrie (Aktivi-	Video zur Dosimetrie	
(2 Ustd.)	tät, Energie- und Äquivalentdosis) auch hinsichtlich der Vorschriften zum Strahlenschutz (K3),	Auswertung von Berichten über Unfälle im kerntechnischen Bereich	

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Bildgebende Ver- fahren (4 Ustd.)	stellen die physikalischen Grundlagen von Röntgenaufnahmen und Szintigrammen als bildgebende Verfahren dar (UF4), beurteilen Nutzen und Risiken ionisierender Strahlung unter verschiedenen Aspekten (B4),	Schülervorträge auf fachlich angemessenem Niveau (mit adäquaten fachsprachlichen Formulierungen) Ggf. Exkursion zur radiolo- gischen Abteilung des Krankenhauses	Nutzung von Strahlung zur Diagnose und zur Therapie bei Krankheiten des Menschen (von Lebewesen) sowie zur Kontrolle bei technischen Anlagen
14 Ustd.	Summe		

Kontext: (Erdgeschichtliche) Altersbestimmungen Leitfrage: Wie funktioniert die 14C-Methode? Inhaltliche Schwerpunkte: Radioaktiver Zerfall

Kompetenzschwerpunkte: Schülerinnen und Schüler können (UF2) zur Lösung physikalischer Probleme zielführend Definitionen, Konzepte sowie funktionale Beziehungen zwischen physikalischen Größen angemessen und begründet auswählen,

(E5) Daten qualitativ und quantitativ im Hinblick auf Zusammenhänge, Regeln oder mathematisch zu formulierende Gesetzmäßigkeiten analysieren und Ergebnisse verallgemeinern,

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Radioaktiver Zerfall: Kernkräfte	benennen Protonen und Neutronen als Kernbausteine, identifizieren Isotope und erläutern den Aufbau einer Nuklidkarte (UF1),	Ausschnitt aus Nuklidkarte	Aufbauend auf Physik- und Chemieun- terreicht der S I
(1 Ustd.)			
Zerfallsprozesse (7 Ustd.)	identifizieren natürliche Zerfallsreihen sowie künstlich herbeigeführte Kernumwandlungsprozesse mithilfe der Nuklidkarte (UF2),	Elektronische Nuklidkarte	Umgang mit einer Nuklidkarte
	entwickeln Experimente zur Bestimmung der Halbwertszeit radioaktiver Substanzen (E4, E5),	Radon-Messung im Schul- keller (Zentralabitur 2008)	Siehe http://www.physik- box.de/radon/radonseite.html Ggf. Auswertung mit Tabellenkalkulati- on durch Schüler

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à 45 min)	Die Schülerinnen und Schüler		
	nutzen Hilfsmittel, um bei radioaktiven Zerfällen den funktionalen Zusammenhang zwischen Zeit und Abnahme der Stoffmenge sowie der Aktivität radioaktiver Substanzen zu ermitteln (K3),	Tabellenkalkulation	Linearisierung, Quotientenmethode, Halbwertszeitabschätzung, ggf. loga- rithmische Auftragung
	leiten das Gesetz für den radioaktiven Zerfall einschließlich eines Terms für die Halbwertszeit her (E6),	Ggf. CAS	Ansatz analog zur quantitativen Beschreibung von Kondensatorentladungen
Altersbestimmung (2 Ustd.)	bestimmen mithilfe des Zerfallsgesetzes das Alter von Materialien mit der C14- Methode (UF2),	Arbeitsblatt	Ggf. Uran-Blei-Datierung
10 Ustd.	Summe		

Kontext: *Energiegewinnung durch nukleare Prozesse* Leitfrage: Wie funktioniert ein Kernkraftwerk?

Inhaltliche Schwerpunkte: Kernspaltung und Kernfusion, Ionisierende Strahlung

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(B1) fachliche, wirtschaftlich-politische und ethische Kriterien bei Bewertungen von physikalischen oder technischen Sachverhalten unterscheiden und begründet gewichten,

(UF4) Zusammenhänge zwischen unterschiedlichen natürlichen bzw. technischen Vorgängen auf der Grundlage eines vernetzten physikalischen Wissens erschließen und aufzeigen.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Kernspaltung und Kernfusion:	bewerten den Massendefekt hinsichtlich seiner Bedeutung für die Gewinnung von Energie (B1),	Video zu Kernwaffenexplosion	Z.B. YouTube
Massendefekt, Äquivalenz von Masse und Ener- gie, Bindungs- energie	bewerten an ausgewählten Beispielen Rollen und Beiträge von Physikerinnen und Physikern zu Erkenntnissen in der Kernund Elementarteilchenphysik (B1),		
(2 Ustd.)			
Kettenreaktion (2 Ustd.)	erläutern die Entstehung einer Kettenreaktion als relevantes Merkmal für einen selbstablaufenden Prozess im Nuklearbereich (E6),	Mausefallenmodell, Video, Applet	Videos zum Mausefallenmodell sind im Netz (z.B. bei YouTube) verfügbar
	beurteilen Nutzen und Risiken von Kernspaltung und Kernfusion anhand verschiedener Kriterien (B4),		

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Kernspaltung, Kernfusion (5 Ustd.)	beschreiben Kernspaltung und Kernfusion unter Berücksichtigung von Bindungsener- gien (quantitativ) und Kernkräften (qualita- tiv) (UF4),	Diagramm <i>B</i> / <i>A</i> gegen <i>A</i> , Tabellenwerk, ggf. Applet	Z.B. http://www.leifiphysik.de
	hinterfragen Darstellungen in Medien hin- sichtlich technischer und sicherheitsrelevan- ter Aspekte der Energiegewinnung durch Spaltung und Fusion (B3, K4).	Recherche in Literatur und Internet Schülerdiskussion, ggf. Fish Bowl, Amerikanische Debat- te, Pro-Kontra-Diskussion	Siehe http://www.sn.schule.de/~sud/methode nkompendium/module/2/1.htm
9 Ustd.	Summe		1

Kontext: Forschung am CERN und DESY – Elementarteilchen und ihre fundamentalen Wechselwirkungen

Leitfrage: Was sind die kleinsten Bausteine der Materie?

Inhaltliche Schwerpunkte: Elementarteilchen und ihre Wechselwirkungen

Kompetenzschwerpunkte: Schülerinnen und Schüler können

(UF3) physikalische Sachverhalte und Erkenntnisse nach fachlichen Kriterien ordnen und strukturieren,

(K2) zu physikalischen Fragestellungen relevante Informationen und Daten in verschiedenen Quellen, auch in ausgewählten wissenschaftlichen Publikationen, recherchieren, auswerten und vergleichend beurteilen,

Inhalt	Kompetenzen	Experiment / Medium	Kommentar
(Ustd. à	Die Schülerinnen und Schüler		
45 min)	Bio condicininon and condicini		

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Kernbausteine und Elementar- teilchen (4 Ustd.)	systematisieren mithilfe des heutigen Standardmodells den Aufbau der Kernbausteine und erklären mit ihm Phänomene der Kernphysik (UF3),	Existenz von Quarks (Video) Internet (CERN / DESY)	Da in der Schule kaum Experimente zum Thema "Elementarteilchenphysik" vorhanden sind, sollen besonders Rechercheaufgaben und Präsentationen im Unterricht genutzt werden. Internet: http://project-physicsteaching/german/ Ggf. Schülerreferate
Kernkräfte Austauschteilchen der fundamenta- len Wechselwir- kungen (4 Ustd.)	vergleichen das Modell der Austauschteilchen im Bereich der Elementarteilchen mit dem Modell des Feldes (Vermittlung, Stärke und Reichweite der Wechselwirkungskräfte) (E6). erklären an Beispielen Teilchenumwandlungen im Standardmodell mithilfe der Heisenberg'schen Unschärferelation und der Energie-Masse-Äquivalenz (UF1).	Darstellung der Wechsel- wirkung mit Feynman- Graphen (anhand von Lite- ratur)	Besonderer Hinweis auf andere Sichtweise der "Kraftübertragung": Feldbegriff vs. Austauschteilchen Die Bedeutung der Gleichung $E=mc^2$ (den SuS bekannt aus Relativitätstheorie) in Verbindung mit der Heisenberg'schen Unschärferelation in der Form $\Delta E \cdot \Delta t \geq h$ (den SuS bekannt aus Elementen der Quantenphysik) für die Möglichkeit des kurzzeitigen Entstehens von Austauschteilchen ist herauszustellen.

Inhalt (Ustd. à 45 min)	Kompetenzen Die Schülerinnen und Schüler	Experiment / Medium	Kommentar
Aktuelle Forschung und offene Fragen der Elementarteilchenphysik (z.B. HiggsTeilchen, Dunkle Materie, Dunkle Energie, Asymmetrie zwischen Materie und Antimaterie,) (3 Ustd.)	recherchieren in Fachzeitschriften, Zeitungsartikeln bzw. Veröffentlichungen von Forschungseinrichtungen zu ausgewählten aktuellen Entwicklungen in der Elementarteilchenphysik (K2),	Literatur und Recherche im Internet "CERN-Rap": http://www.youtube.com/wat ch?v=7VshToyoGl8	Hier muss fortlaufend berücksichtigt werden, welches der aktuelle Stand der Forschung in der Elementarteilchenphysik ist (derzeit: Higgs-Teilchen, Dunkle Materie, Dunkle Energie, Asymmetrie zwischen Materie und Antimaterie,) Der CERN-Rap gibt eine für Schülerinnen und Schüler motivierend dargestellte Übersicht über die aktuelle Forschung im Bereich der Elementarteilchenphysik
11 Ustd.	Summe		